① 遗传算法有哪些应用
遗传算法的搜索策略和优化搜索方法是不依附于梯度信息及其它的辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学。遗传算法的应用领域有很多,下面针对一些主要的应用领域做简单的介绍。
1.函数优化:该领域是遗传算法得以应用的经典领域,同时它也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于函数优化问题,如一些非线性、多模型、多目标等函数问题用遗传算法很容易得到较好的结果,而用其他算法则较难。
2.组合优化:由于组合优化问题的搜索空间在不断地增大,有时用枚举法很难得到最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。比如,在旅行商问题、装箱问题及图形划分等问题上,已经成功得以应用了遗传算法。
② 如何通俗易懂地解释遗传算法有什么例子
相信遗传算法的官方定义你已经看过,就我个人理解
遗传算法的思想是物竞天择,优胜劣汰。
你可以理解为,当我们解某道数学题时,如果这个题太难我们没法列公式算出正确答案,我们有时候也可以蒙答案去反过来看看是否满足这道题提干的要求,如果能满足,说明我们蒙的答案是正确的。但是蒙对答案要试很多遍,每次随机的去试数可能要试1000次才能蒙对。可是遗传算法可以让我们科学的去蒙答案,每次蒙的答案都会比上一次蒙的更接近正确答案,这样可能蒙十几次我们就找到正确答案了。
希望我的回答对你理解GA有所帮助,望采纳
③ 高分悬赏:遗传算法应用实例
柔性生产计划?我想在这方面,遗传算法应用的例子还是有一些的。比如说人员的安排,机器设备的调度等
④ 谁有遗传算法应用实例
遗传学专业的同学估计会有
⑤ 遗传算法原理与应用实例的内容简介
《遗传算法原理与应用实例》是解决复杂空间性能指标优化问题的智能计算方法,近年来已经在很多领域中得到成功的应用。《遗传算法原理与应用实例》除包含编者近年来在山西省教育厅科技开发项目基金资助下取得的一些工作成果外,还汇集了国内外一些专家学者的最新研究成果。
《遗传算法原理与应用实例》内容自成体系,无需太多预备知识。可供高等学校计算数学、计算化学和计算机科学技术等专业的高年级本科生和研究生学习,也可供理工科其他专业和管理专业的师生参考,还可供利用计算机从事优化和管理工作的科技人员阅读参考。
⑥ 遗传算法的程序应用,最好举例说明。
这种很主流的算法能搜到很多。
比如遗传算法合集,包括遗传算法简介、研究热点、着作、站点、参考论文下载等:
http://www.chinaai.org/ai/neural-network/genetic-algorithm.html
看之前记得打开杀毒软件跟防火墙。
⑦ 遗传算法具体应用
1、函数优化
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。
2、组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。
此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
3、车间调度
车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。
从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。
(7)遗传算法的应用实例讲解扩展阅读:
遗传算法的缺点
1、编码不规范及编码存在表示的不准确性。
2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。
3、遗传算法通常的效率比其他传统的优化方法低。
4、遗传算法容易过早收敛。
5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。
⑧ 遗传算法及其应用的内容简介
本书系统全面地介绍了遗传算法的基本原理、设计方法及其并行实现,以及它在组合优化、机器学习、图像处理、过程控制、进化神经网络、模糊模式识别和人工生命等方面的应用。
本书可作为高等院校计算机、无线电电子学、自动控制、生物医学工程等有关专业高年级学生或研究生的教材和参考书,也可供从事人工智能、信息处理研究和应用的科技人员学习参考。