① 迷宫问题得到最优算法的条件是什么
源程序://base.h#include#include#include#defineTRUE1#defineFALSE0#defineOK1#defineERROR0#defineOVERFLOW-2typedefintStatus;//stack.h#include"base.h"#defineINIT_SIZE100//存储空间初始分配量#defineINCREMENT10//存储空间分配增量typedefstruct{//迷宫中r行c列的位置intr;intc;}PostType;typedefstruct{intord;//当前位置在路径上的序号PostTypeseat;//当前坐标intdi;//往下一坐标的方向}SElemType;//栈元素类型typedefstruct{SElemType*base;//栈基址,构造前销毁后为空SElemType*top;//栈顶intstackSize;//栈容量}Stack;//栈类型StatusInitStack(Stack&S){//构造空栈sS.base=(SElemType*)malloc(INIT_SIZE*sizeof(SElemType));if(!S.base)exit(OVERFLOW);//存储分配失败S.top=S.base;S.stackSize=INIT_SIZE;returnOK;}//InitStackStatusStackEmpty(StackS){//若s为空返回TRUE,否则返回FALSEif(S.top==S.base)returnTRUE;returnFALSE;}//StackEmptyStatusPush(Stack&S,SElemTypee){//插入元素e为新的栈顶元素if(S.top-S.base>=S.stackSize){//栈满,加空间S.base=(SElemType*)realloc(S.base,(S.stackSize+INCREMENT)*sizeof(SElemType));if(!S.base)exit(OVERFLOW);//存储分配失败S.top=S.base+S.stackSize;S.stackSize+=INCREMENT;}*S.top++=e;returnOK;}//pushStatusPop(Stack&S,SElemType&e){//若栈不空删除栈//顶元素用e返回并返回OK,否则返回ERRORif(S.top==S.base)returnERROR;e=*--S.top;returnOK;}//PopStatusDestroyStack(Stack&S){//销毁栈S,free(S.base);S.top=S.base;returnOK;
② 优化算法是什么呢
优化算法是指对算法的有关性能进行优化,如时间复杂度、空间复杂度、正确性、健壮性。
大数据时代到来,算法要处理数据的数量级也越来越大以及处理问题的场景千变万化。为了增强算法的处理问题的能力,对算法进行优化是必不可少的。算法优化一般是对算法结构和收敛性进行优化。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
遗传算法
遗传算法也是受自然科学的启发。这类算法的运行过程是先随机生成一组解,称之为种群。在优化过程中的每一步,算法会计算整个种群的成本函数,从而得到一个有关题解的排序,在对题解排序之后,一个新的种群----称之为下一代就被创建出来了。首先,我们将当前种群中位于最顶端的题解加入其所在的新种群中,称之为精英选拔法。新种群中的余下部分是由修改最优解后形成的全新解组成。
常用的有两种修改题解的方法。其中一种称为变异,其做法是对一个既有解进行微小的、简单的、随机的改变;修改题解的另一种方法称为交叉或配对,这种方法是选取最优解种的两个解,然后将它们按某种方式进行组合。尔后,这一过程会一直重复进行,直到达到指定的迭代次数,或者连续经过数代后题解都没有改善时停止。
③ 时间复杂性达到什么的算法称为最优算法
失恋复杂性达到什么的算法称为最优算法最优算法就是它的使用程度远远高于其他的算法,而且他的算法的适用性比较强
④ 什么是最优适应分配算法
分区分配算法(Partitioning Placement Algorithm) ,共有3种。分别为最佳适应算法、首次适应算法、循环首次适应算法。
1、最佳适应算法(Best Fit):
它从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表(空闲区链)中的空闲分区要按大小从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。该算法保留大的空闲区,但造成许多小的空闲区。
2、首次适应算法(First Fit):
从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法目的在于减少查找时间。为适应这种算法,空闲分区表(空闲区链)中的空闲分区要按地址由低到高进行排序。该算法优先使用低址部分空闲区,在低址空间造成许多小的空闲区,在高地址空间保留大的空闲区。
3、循环首次适应算法(Next Fit):
该算法是首次适应算法的变种。在分配内存空间时,不再每次从表头(链首)开始查找,而是从上次找到空闲区的下一个空闲开始查找,直到找到第一个能满足要求的的空闲区为止,并从中划出一块与请求大小相等的内存空间分配给作业。该算法能使内存中的空闲区分布得较均匀。
⑤ 什么是最佳适应算法
最佳适应算法是从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区的一种计算方法,这种方法能使碎片尽量小。
最佳适应算法(Best Fit):
它从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表(空闲区链)中的空闲分区要按从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。该算法保留大的空闲区,但造成许多小的空闲区。
Best fit算法等价于装箱问题,举例如下:
装箱问题:有体积为V的箱子N个,体积为Vi的物品M个,求使得物品全部能够装入箱子,箱子数量的最小值。
假设 V=6 M=10,V1,V2,...,V10分别为:3 4 4 3 5 1 2 5 3 1。计算过程如下:
第一步按物品体积降序排序:5 5 4 4 3 3 3 2 1 1
第二步:取未装箱的最大值5装入第一个箱子。
第三步:判断第一个箱子是否已满,不满且剩余空间为1,搜寻剩下体积小于等于1的物品填入箱子1,箱子1填满。
第四步:重复第二,第三步,直到所有物品装入箱子为止,得到箱子数量为6.
6即时本例N的最小值。
⑥ 最优化理论算法
本书是陈宝林教授在多年实践基础上编着的.书中包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K?T条件、无约束最优化方法、约束最优化方法、整数规划和动态规划等内容.本书含有大量经典的和新近的算法,有比较系统的理论分析,实用性比较强;定理的证明和算法的推导主要以数学分析和线性代数为基础,比较简单易学.本书可以作为运筹学类课程的教学参考书,也可供应用数学工作者和工程技术人员参考。
⑦ 找一种可以帮人从几种方案里面选择最优的算法
如果找一种可以帮人充几种方案,里面选择最悠闲的算法是我觉得是很困难的
⑧ 用什么算法解决最优算法比较合适
问题是线性的,还是非线性的。线性的,分枝定界、分枝割平面、分枝定价、列生成等算法都可以求解;非线性的,还要分是否凸,凸的话,广义Benders分解、外部近似、分枝定界、扩展割平面算法等,非凸的话,可采用全局最优算法。判断一下是否是凸规划,是的话,用上面的算法可以求到全局最优;否则,可能得到局部最优解。
⑨ C语言最优解算法
#include<stdio.h>
int result[100][6];
int data[100000][2];
int main()
{
int i,j,T,f,temp,rlen=0,dlen,swap;
scanf("%d",&T);
while(T-->0)
{
for(dlen=0;1;dlen++)
{
scanf("%d %d",&data[dlen][0],&data[dlen][1]);
if(0==data[dlen][0] && 0==data[dlen][1])
break;
}
scanf("%d",&f);
for(i=0;i<dlen-1;i++)
{
for(j=0;j<dlen-i-1;j++)
{
swap=0;
if(0==f)
{
if(data[j][0]>data[j+1][0] || (data[j][0]==data[j+1][0] && data[j][1]>data[j+1][1]))
{
swap=1;
}
}
else if(1==f)
{
if(data[j][1]>data[j+1][1] || (data[j][1]==data[j+1][1] && data[j][0]>data[j+1][0]))
{
swap=1;
}
}
if(1==swap)
{
temp=data[j][0];
data[j][0]=data[j+1][0];
data[j+1][0]=temp;
temp=data[j][1];
data[j][1]=data[j+1][1];
data[j+1][1]=temp;
}
}
}
if(dlen>=3)
{
for(i=0;i<3;i++)
{
result[rlen][2*i]=data[i][0];
result[rlen][2*i+1]=data[i][1];
}
rlen++;
}
}
for(i=0;i<rlen;i++)
{
printf("Case #%d:\n",i+1);
for(j=0;j<3;j++)
printf("%d %d\n",result[i][2*j],result[i][2*j+1]);
}
return 0;
}
⑩ 什么是“渐进意义下的最优算法 ”
是指经过有限次规划迭代后得到的路径是接近最优的次优路径,且每次迭代后都与最优路径更加接近,是一个逐渐收敛的过程;