‘壹’ 蚁群优化算法的目录
1.1 组合优化与计算复杂性
1.2 来自自然界的几类优化方法 2.1 基本思想
2.2研究概况 3.1 TSP概述
3.2 经典方法
3.3 遗传算法与模拟退火法
3.4蚁群算法
3.5 元胞蚁群算法及其收敛性 4.1 瓶颈TSP及其求解
4.2 最小比率TSP及其求解
4.3 时间约束TSP及其求解
4.4 多目标TSP及其求解 5.1 VRP概述
5.2 CVRP及其求解
5.3 多目标VRP及其求解
5.4 VRPTW及其求解
5.5 VRPSTW及其求解
5.6 FVRP及其求解 6.1 度约束最小树问题及其求解
6.2 Steiner最小树问题及其求解
6.3 Min-Max度最优树问题与多目标最小树问题 7.1 0-1规划问题及其求解
7.2 背包问题及其求解
7.3 多目标0-1规划问题及其求解
7.4 一般整数规划问题及其求解 8.1 基本蚁群算法
8.2 元胞蚁群算法
8.3 平面选址问题及其求解
8.4 多目标优化问题及其求解 9.1 二次分配问题及其求解
9.2 图着色问题及其求解
9.3 多目标最短路及其求解 附录 中国144城锋衡市相对坐标数据
后记
《运筹与管银侍做理科谈空学丛书》已出版书目
‘贰’ C语言中退火模拟
模拟退火法 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→ 接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schele)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
退火算法
Simulate Anneal Arithmetic (SAA,模拟退火算法) 模拟退火算法 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schele)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 模拟退火算法起源于物理退火。 物理退火过程: (1) 加温过程 (2) 等温过程 (3) 冷却过程 1 . 模拟退火算法的模型 模拟退火算法可以分解为解空间、目标函数和初始解三部分。 模拟退火的基本思想: (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解S′ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解. (6) 如果满足终止条件则输出当前解作为最优解,结束程序。 终止条件通常取为连续若干个新解都没有被接受时终止算法。 (7) T逐渐减少,且T->0,然后转第2步。 算法对应动态演示图: 模拟退火算法新解的产生和接受可分为如下四个步骤: 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。 模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。 2 模拟退火算法的简单应用 作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码1,…,n代表。城市i和城市j之间的距离为d(i,j) i, j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。 求解TSP的模拟退火算法模型可描述如下: 解空间 解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2 ,……,wn),并记wn+1= w1。初始解可选为(1,……,n) 目标函数 此时的目标函数即为访问所有城市的路径总长度或称为代价函数: 我们要求此代价函数的最小值。 新解的产生 随机产生1和n之间的两相异数k和m,若k (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn) 变为: (w1, w2 ,…,wm , wm-1 ,…,wk+1 , wk ,…,wn). 如果是k>m,则将 (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn) 变为: (wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk). 上述变换方法可简单说成是“逆转中间或者逆转两端”。 也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。 代价函数差 设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un), 则代价函数差为: 根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序: Procere TSPSA: begin init-of-T; { T为初始温度} S={1,……,n}; {S为初始值} termination=false; while termination=false begin for i=1 to L do begin generate(S′form S); { 从当前回路S产生新回路S′} Δt:=f(S′))-f(S);{f(S)为路径总长} IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1]) S=S′; IF the-halt-condition-is-TRUE THEN termination=true; End; T_lower; End; End 模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheling Problem)等等。 3 模拟退火算法的参数控制问题 模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点: (1) 温度T的初始值设置问题。 温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。 (2) 退火速度问题。 模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。 (3) 温度管理问题。 温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式: T(t+1)=k×T(t) 式中k为正的略小于1.00的常数,t为降温的次数 4、模拟退火算法的优缺点 优点:计算过程简单,通用,鲁棒性强,适用于并行处理,可用于求解复杂的非线性优化问题。 缺点:收敛速度慢,执行时间长,算法性能与初始值有关及参数敏感等缺点。 经典模拟退火算法的缺点: (1)如果降温过程足够缓慢,多得到的解的性能会比较好,但与此相对的是收敛速度太慢; (2)如果降温过程过快,很可能得不到全局最优解。 模拟退火算法的改进 (1) 设计合适的状态产生函数,使其根据搜索进程的需要 表现出状态的全空间分散性或局部区域性。 (2) 设计高效的退火策略。 (3) 避免状态的迂回搜索。 (4) 采用并行搜索结构。 (5) 为避免陷入局部极小,改进对温度的控制方式 (6) 选择合适的初始状态。 (7) 设计合适的算法终止准则。 也可通过增加某些环节而实现对模拟退火算法的改进。 主要的改进方式包括: (1) 增加升温或重升温过程。在算法进程的适当时机,将温度适当提高,从而可激活各状态的接受概率,以调整搜索进程中的当前状态,避免算法在局部极小解处停滞不前。 (2) 增加记忆功能。为避免搜索过程中由于执行概率接受环节而遗失当前遇到的最优解,可通过增加存储环节,将一些在这之前好的态记忆下来。 (3) 增加补充搜索过程。即在退火过程结束后,以搜索到的最优解为初始状态,再次执行模拟退火过程或局部性搜索。 (4) 对每一当前状态,采用多次搜索策略,以概率接受区域内的最优状态,而非标准SA的单次比较方式。 (5) 结合其他搜索机制的算法,如遗传算法、混沌搜索等。 (6)上述各方法的综合应用。
‘叁’ 退火算法的应用领域及示例
作为模拟退火算法应用,讨论旅行商问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码1,…,n代表。城市i和城市j之间的距离为d(i,j) i,j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。
求解TSP的模拟退火算法模型可描述如下:
解空间 解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2,……,wn),并记wn+1= w1。初始解可选为(1,……,n)
目标函数 此时的目标函数即为访问所有城市的路径总长度或称为代价函数:
我们要求此代价函数的最小值。
新解的产生 随机产生1和n之间的两相异数k和m,
若k<m,则将
(w1,w2,…,wk,wk+1,…,wm,…,wn)
变为:
(w1,w2,…,wm,wm-1,…,wk+1,wk,…,wn).
如果是k>m,则将
(w1,w2,…,wm,wm+1,…,wk,…,wn)
变为:
(wm,wm-1,…,w1,wm+1,…,wk-1,wn,wn-1,…,wk).
上述变换方法可简单说成是“逆转中间或者逆转两端”。
也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。
代价函数差 设将(w1,w2,……,wn)变换为(u1,u2,……,un),则代价函数差为:
根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:
Procere TSPSA:
begin
init-of-T; { T为初始温度}
S={1,……,n}; {S为初始值}
termination=false;
while termination=false
begin
for i=1 to L do
begin
generate(S′form S); { 从当前回路S产生新回路S′}
Δt:=f(S′))-f(S);{f(S)为路径总长}
IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])
S=S′;
IF the-halt-condition-is-TRUE THEN
termination=true;
End;
T_lower;
End;
End
模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheling Problem)等等。 模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:
⑴ 温度T的初始值设置问题。
温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。
⑵ 退火速度问题。
模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。
⑶ 温度管理问题。
温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:
T(t+1)=k×T(t)
式中k为正的略小于1.00的常数,t为降温的次数 优点:计算过程简单,通用,鲁棒性强,适用于并行处理,可用于求解复杂的非线性优化问题。
缺点:收敛速度慢,执行时间长,算法性能与初始值有关及参数敏感等缺点。
经典模拟退火算法的缺点:
⑴如果降温过程足够缓慢,多得到的解的性能会比较好,但与此相对的是收敛速度太慢;
⑵如果降温过程过快,很可能得不到全局最优解。
模拟退火算法的改进
⑴ 设计合适的状态产生函数,使其根据搜索进程的需要
表现出状态的全空间分散性或局部区域性。
⑵ 设计高效的退火策略。
⑶ 避免状态的迂回搜索。
⑷ 采用并行搜索结构。
⑸ 为避免陷入局部极小,改进对温度的控制方式
⑹ 选择合适的初始状态。
⑺ 设计合适的算法终止准则。
也可通过增加某些环节而实现对模拟退火算法的改进。
主要的改进方式包括:
⑴ 增加升温或重升温过程。在算法进程的适当时机,将温度适当提高,从而可激活各状态的接受概率,以调整搜索进程中的当前状态,避免算法在局部极小解处停滞不前。
⑵ 增加记忆功能。为避免搜索过程中由于执行概率接受环节而遗失当前遇到的最优解,可通过增加存储环节,将一些在这之前好的态记忆下来。
⑶ 增加补充搜索过程。即在退火过程结束后,以搜索到的最优解为初始状态,再次执行模拟退火过程或局部性搜索。
⑷ 对每一当前状态,采用多次搜索策略,以概率接受区域内的最优状态,而非标准SA的单次比较方式。
⑸ 结合其他搜索机制的算法,如遗传算法、混沌搜索等。
⑹上述各方法的综合应用。
‘肆’ 如何通俗易懂地解释遗传算法
遗传算法,核心是达尔文优胜劣汰适者生存的进化理论的思想。
我们都知道一个种群,通过长时间的繁衍,种群的基因会向着更适应环境的趋势进化,牛B个体的基因被保留,后代越来越多,适应能力低个体的基因被淘汰,后代越来越少。经过几代的繁衍进化,留下来的少数个体,就是相对能力最强的个体了。
那么在解决一些问题的时候,我们能不能学习这样的思想,比如先随机创造很多很多的解,然后找一个靠谱的评价体系,去筛选比较好的解,再用这些好的解像生小宝宝一样生一堆可能更好的解,然后再筛再生,反复弄个几代,得到的说不定就是近似最优解哟
说干就干,有一个经典组合问题叫“背包问题”,我们拿这种思路来试试
“背包问题(Knapsack Problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。”
这个问题的衍生简化问题“0-1背包问题” 增加了限制条件:每件物品只有一件,可以选择放或者不放,更适合我们来举例
这样的问题如果数量少,当然最好选择穷举法
比如一共3件商品,用0表示不取,1表示取,那么就一共有
000 001 010
011 100 101
110 111
这样方案,然后让计算机去累加和,与重量上限比较,留下来的解里取最大即可。
‘伍’ 智能算法的智能算法概述
智能优化算法要解决的一般是最优化问题。最优化问题可以分为(1)求解一个函数中,使得函数值最小的自变量取值的函数优化问题和(2)在一个解空间里面,寻找最优解,使目标函数值最小的组合优化问题。典型的组合优化问题有:旅行商问题(Traveling Salesman Problem,TSP),加工调度问题(Scheling Problem),0-1背包问题(Knapsack Problem),以及装箱问题(Bin Packing Problem)等。
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,本文介绍的模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。
一般而言,局部搜索就是基于贪婪思想利用邻域函数进行搜索,若找到一个比现有值更优的解就弃前者而取后者。但是,它一般只可以得到“局部极小解”,就是说,可能这只兔子登“登泰山而小天下”,但是却没有找到珠穆朗玛峰。而模拟退火,遗传算法,禁忌搜索,神经网络等从不同的角度和策略实现了改进,取得较好的“全局最小解”。