A. 游戏中的A星算法怎么写
首先A星算法占内存和CPU简直要命,之前用AS3写的代码90*90格仅6个敌人每次同时寻路都得卡上几秒,还经常找不到路,反正我目前还没想到好的优化方法。
B. 跪求 广度,深度,A星相关算法解决问题
八皇后是经典的回溯问题。
说一下自己的编程思想:
定义一个8×8的棋盘:int graph[8][8];初始时所有值均为0
检查当前位置能否放置皇后,假定下标为i, j;
bool check(int i, int j)
{
判断当前位置所在行和列是否有皇后,若有则返回false, 否则返回true;
}
然后就是搜索了.这里选择按行进行深度优先搜索。
dfs(int i, int j)
{
if(i >= 8)
{
已经到最后一层,可以输出结果。graph中所有标志1的地方
即为皇后所在位置。
return;
}
graph[i][j] = 1; // 在此处放置一个皇后
for(int k = 0; k < 8; k++)
if(check(i+1, k)) // 说明找到一个合适的位置
dfs(i+1, k); //向下一层移动
graph[i][j] = 0;// 回溯
}
C. lua语言a星寻路算法路径怎么平滑
在项目中遇到了自动寻路的需求,于是决定开始学习一下A星,对于A星我也没有深究,只能说是勉强搞定了需求,在这和大家分享一下,相互进步,
A星有个公式 f(x) = g(x) + h(x)
,搞清楚这个公式就好办了,f(x)就是当前位置到下一个位置的总价值,g(x)表示实际价,这是说这一部分代价是确定的,h(x)表示估价值,就是说我
从下一个位置到到终点的代价是未知的,所以叫估价值,如图中所示,黑色格子表示当前位置,绿色格子表示下一步可能到达的位置,即上、下、左、右这几个方
向,红色格子表示终点,褐色表示障碍物,现在要从黑色格子到达红色格子,那么黑色格子的下一步肯定是绿色格子当中的一个,黑色格子到绿色格子之间是相挨着
的,所以我们可以很明确的知道它的实际代价为1(移动一步的代价)即g(x),绿色格子到红色格子之间隔着很长的距离,中间还有障碍物,所以这个代价是未
知的,即h(x),所以总的代价就为f(x) = g(x) +
h(x),我们看到周围有4个绿色的格子,到底走那一步比较好呢,所以我们要把这4个格子的f(x)值都求出来,然后进行排序,选择f(x)值最小的,即
总代价最少的那个格子,以此方法继续下去,直到到达终点 或者 地图上没有绿色格子了
下面来看一下这个工具类,g(x)和h(x)要选的比较合适,一般就是采用的曼哈顿算法,即两点在x方向和y方向的距离之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 寻路
mole("PathUtil", package.seeall)
local _map_data -- 地图数据
local _open_list -- 开放节点
local _open_map -- 开放节点,为了提高性能而加
local _close_map -- 关闭节点
local _deleget -- 代理
local _dest_point -- 目标点
local _start_point -- 起点
local _path -- 路径
-- 寻找路径
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回点point1到点point2的实际代价
end
h = function(point1, point2)
-- add your code
-- 返回点point1到点point2的估算代价
end
getValue = function(j, i)
-- 返回地图中第i行,第j列的数据 1为障碍物,0为非障碍物
end
width -- 地图宽度
height -- 地图高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end
function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end
function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end
-- 得到下一个可以移动的点
-- @param point 当前所在点
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end
-- 得到路径
-- @param end_point 目标点
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end
-- 两个点的代价比较器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end
-- 是否是障碍物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end
-- 两个点是否是同一个点
function isEqual(point1, point2)
return point1.key == point2.key
end
-- 根据点得到点的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end
下面是工具类PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows
local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)
_path就是我们找到的路径,起点为最后一个元素,终点为第一个元素
D. 如何实现A星寻路算法 Cocos2d-x 3.0 beta2
操作步骤如下:一win764位系统搭建android开发环境需要的软件1.cocos2d-x3.3beta02.VisualStudio2012/2013安装完占硬盘空间近10G,VisualStudio2012/2013是需要注册码。4.AndroidSDK(其中包括Eclipse)5.AndroidNDK6.Ant7.Python2.7.8不要下载3.x以上版本二软件安装安装软件时不要安装在C盘。1.VisualStudio2012/2013VisualStudio2012/2013安装方法像安装其他软件一样,一路下一步就可以,但是注意安装前IE浏览器版本必须是IE10以上版本。2.Python2.7.8安装方法同上,但是不要安装在C盘。3.JAVAJDKJAVAJDK默认安装,这个可以安装在C盘。4.cocos2d-x3.3beta0 AndroidSDK AndroidNDK Ant这些软件都是解压包,不需要安装,解压就可以。三cocos2d-x3.3beta0环境调试1.打开cocos2d-x3.3beta0所在的文件[attachment=78978]按Shift+鼠标右键,点在此次打开命令窗口。现在可以看见画黄线的是软件变量名称,红线是变量路径。正常的是4个变量名称4条变量路径,如果不是就需要手动添加,方法如下:1.右键计算机(XP叫我的电脑,win7叫计算机)------2.属性------3.高级系统设置------4.环境变量------5.新建6.在变量名中添加缺少的变量名,在变量值中添加路径。如:变量名NDK_ROOT 变量值D:\android-ndk-r10b软件名称 变量名cocos2d-x3.3beta0 COCOS_CONSOLE_ROOTAndroidSDK ANDROID_SDK_ROOTAndroidNDK NDK_ROOTAnt ANT_ROOT再次.打开cocos2d-x3.3beta0所在的文件,按Shift+鼠标右键,点在此次打开命令窗口。如果看到4个变量名称4条变量路径就说明变量调试正确。四创建项目1.打开cocos2d-x3.3beta0所在的文件,按Shift+鼠标右键,点在此次打开命令窗口。2.键入setup.py回车3.键入cocosnew项目名称-p包名-l语言cpp-d项目路径如:cocosnewtest-ptiaoshi-lcpp-d/test/android/cheshi会在存放cocos2d-x3.3beta0的盘符里出现一个名称为tset的文件,打开文件-----proj.win32-----TSET.sin在VisualStudio2013中点 调试------开始执行不调试
E. JAVA的A星算法问题
class AllShunXu { static String str = "12345"; static char[] a = str.toCharArray(); static int n = 5; static void swap(int arg1, int arg2){ char temp; temp = a[arg1]; a[arg1] = a[arg2]; a[arg2] = temp; } static void sort(int index){ int i; if (index == n){ for (i = 0; i < n; i++){ System.out.print(a[i]); } System.out.println(""); return; } for (i = index; i < n; i++){ swap(index,i); sort(index + 1); swap(index,i); } } public static void main(String args[]){ for(int s =0;s<n;s++){ sort(s); } }}
F. 如何基于Cocos2d-x v3.x实现A星寻路算法
实现A星算法
根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法:
- 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值)
- 一个方法用来计算从一个方块到相邻方块的移动数值
- 一个方法是根据"曼哈顿距离"算法,计算方块的H值
打开CatSprite.cpp文件,添加如下方法:
void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord(const Point &fromCoord, const Point &toCoord)
{
// 这里使用曼哈顿方法,计算从当前步骤到达目标步骤,在水平和垂直方向总的步数
// 忽略了可能在路上的各种障碍
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::(const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因为不能斜着走,而且由于地形就是可行走和不可行走的成本都是一样的
// 如果能够对角移动,或者有沼泽、山丘等等,那么它必须是不同的
return 1;
}
接下来,需要一个方法去获取给定方块的所有相邻可行走方块。因为在这个游戏中,HelloWorld管理着地图,所以在那里添加方法。打开HelloWorldScene.cpp文件,添加如下方法:
PointArray *HelloWorld::(const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}
可以继续CatSprite.cpp中的moveToward方法了,在moveToward方法的后面,添加如下代码:
bool pathFound = false;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加猫的方块坐标到open列表
this->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步骤
// 因为是有序列表,第一个步骤总是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加当前步骤到closed列表
_spClosedSteps.pushBack(currentStep);
// 将它从open列表里面移除
// 需要注意的是,如果想要先从open列表里面移除,应小心对象的内存
_spOpenSteps.erase(0);
// 如果当前步骤是目标方块坐标,那么就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true;
ShortestPathStep *tmpStep = currentStep;
CCLOG("PATH FOUND :");
do
{
CCLOG("%s", tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到没有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break;
}
// 得到当前步骤的相邻方块坐标
PointArray *adjSteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 检查步骤是不是已经在closed列表
if (this->getStepIndex(_spClosedSteps, step) != -1)
{
continue;
}
// 计算从当前步骤到此步骤的成本
int moveCost = this->(currentStep, step);
// 检查此步骤是否已经在open列表
ssize_t index = this->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 设置当前步骤作为上一步操作
step->setParent(currentStep);
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是从此步骤到目标方块坐标的移动量估算值
step->setHScore(this->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this->insertInOpenSteps(step);
}
else
{
// 获取旧的步骤,其值已经计算过
step = _spOpenSteps.at(index);
// 检查G值是否低于当前步骤到此步骤的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因为G值改变了,F值也会跟着改变
// 所以为了保持open列表有序,需要将此步骤移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 现在可以放心移除,不用担心被释放
_spOpenSteps.erase(index);
// 重新按序插入
this->insertInOpenSteps(step);
// 现在可以释放它了,因为open列表应该持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
}
添加以下方法:
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
G. 按键精灵a星算法寻路怎么制作地图
你可以查找有关a星算法走路,一步步去学,别人也不知道你说的是什么地图,怎么判断
H. 如何在使用Cocos2D中实现A星(A*)寻路算法
实现A星算法
根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法:
- 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值)
- 一个方法用来计算从一个方块到相邻方块的移动数值
- 一个方法是根据"曼哈顿距离"算法,计算方块的H值。
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
I. 如何基于cocos2dx3.x实现A星寻路算法
实现A星算法 根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法: - 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值) - 一个方法用来计算从一个方块到相邻方块的移动数值 - 一个方法是根据"曼哈顿距离"算法
J. A星寻路算法和Unity自带的寻路相比有什么优势
并没一种寻路适合所有场合,选择都是基于需求而定的。
1. A* 算法与贪婪算法不一样,贪婪算法适合动态规划,寻找局部最优解,不保证最优解。
A*是静态网格中求解最短路最有效的方法。也是耗时的算法,不宜寻路频繁的场合。一般来说适合需求精确的场合。
与启发式的搜索一样,能够根据改变网格密度、网格耗散来进行调整精确度。
使用的地方:
a. 策略游戏的策略搜索
b. 方块格子游戏中的格子寻路
2. Unity 自带的导航网格系统
Unity 内置了NavMesh导航网格系统,一般来说导航网格算法大多是“拐角点算法”。
效率是比较高的,但是不保证最优解算法。
使用的地方:
a.游戏场景的怪物寻路
b.动态规避障碍