导航:首页 > 源码编译 > 根目录下编译器如何保存编译文件

根目录下编译器如何保存编译文件

发布时间:2024-06-25 09:03:07

⑴ 怎么把C++程序打包成exe程序

把C++程序打包成exe程序,首先需要一个编译器,比如开源的gcc,微软的VS,以vs2010为例:

1、在vs2010中,新建C++项目,将C++源文件添加进来,如下图,新建项是建立空白文件,现有项就是添加已经写好的源文件;

最后,把exe文件和下载好的运行时一起打包,就大功告成了。

⑵ 如何编译OpenWrt

Openwrt 官方正式的发行版是已编译好了的映像文件(后缀名bin或trx、trx2),此映像文件可从Openwrt官方网站的下载页面中轻松获取到,连接地址为 OpenWrt官方网站。这些编译好的映像文件是基于默认的配置设置,且只针对受支持的平台或设备的。因此,为什么要打造一个自己的映像文件,理由有以下四点:
您想拥有一个个性化的配置OpenWrt(彰显个性,在朋友圈子里显摆显摆,开个玩笑);
您想在实验性的平台上测试OpenWrt;
您参与测试或参与开发OpenWrt的工作;
或者,最简单的目的就是为了保持自己的Openwrt为最新版本;
若想实现上述目的,其实很简单,按下述文字即可成功编译出一个您的Openwrt来。
准备工作
在开始编译Openwrt之前需要您做些准备工作;与其他编译过程一样,类似的编译工具和编译环境是必不可少的:
一个构建OpenWrt映像的系统平台,简单说就是准备一个操作系统(比如Ubuntu、Debian等);
确保安装了所需的依赖关系库, (在debian系统中就是安装各种需要的软件包)
OpenWrt源代码副本
首先, 开机登陆到支持编译Openwrt的操作系统(废话了)。实体机或者虚拟机(Vmware 或者 Qemu)里的操作系统都行,这里推荐使用linux系统。 bsd和mac osx系统也可以编,但不推荐,且未验证是否可编译成功。下文假定您使用的是Debian操作系统,使用 apt-get 来管理包. 替代的选择是 Ubuntu (分支 Kubuntu, Xubuntu 等即可)。
第二步, 就是安装所需要的各种软件包, 包括编译器,解压工具,特定的库等. 这些工作可以简单的通过键入以下命令 (通常需要root 或者是 sudo 权限),以root权限安装下列软件包(可能并不完整,会有提示,提示缺少即装就可以了):
32位(x86)请执行下列命令:
# apt-get install build-essential asciidoc binutils bzip2 gawk gettext \
git libncurses5-dev libz-dev patch unzip zlib1g-dev

64位(x86_64)请执行下列命令(多装了哪些库或软件包呢?请您仔细看一看哦):
# apt-get install build-essential asciidoc binutils bzip2 gawk gettext \
git libncurses5-dev libz-dev patch unzip zlib1g-dev ia32-libs \
lib32gcc1 libc6-dev-i386

参考 本列表中 所列的编译环境所需要软件包或库。
某些依赖的为库或软件包也许操作系统中已经安装过,此时apt-get会作出提示(提示您忽略或重新安装的),别紧张,放轻松些,编译Openwrt不会像编译DD-WRT那样难的(至少本人是体会到了编译DD-WRT的难)。
最后下载一份完整的 Openwrt 源码到编译环境中。关于Openwrt的源代码下载,途径有二,一是通过 svn ,一是通过 git,建议使用 svn ,因为Openwrt主要以 svn 来维护Openwrt系统的版本。另外,请注意Openwrt中不同的分支版本,一个是用得较多的开发快照,俗称 trunk,二是稳定版,俗称 backfire。
安装Subversion
若你想通过svn下载源代码,你需安装 Subversion。Subversion,或称SVN, 是OpenWrt的project中用来控制版本的系统,它非常类似的 CVS的界面和使用条款。 执行下述命令即可安装SVN,很容易的:
# apt-get install subversion

Subversion安装完毕,通过SVN命令可获取得到一份OpenWrt纯净源代码。您还得创建一个目录以便存放获取得到的Openwrt源代码,要获取源代码你还得输入subversion命令来获取 (svn里这种操作称之为'check out') 。命令很简单的,继续看下去就能见到了,别着急,耐心点儿。
编译流程
编译专属于您的设备的特定Openwrt固件以一下五个步骤:
通过Subversion命令获得源代码;
更新(或安装) package feeds〔package feeds无法确切翻译,待译吧);
创建一个默认配置以检查编译环境是否搭建好了 (假如需要的话);
用Menuconfig来配置即将编译生成的固件映像文件的配置项;
最后开始编译固件;
下载源代码
最后,下载一份完整的OpenWrt源代码。你可选择:
下载稳定发行版,或
下载开发版 (俗称"trunk"版)。
使用发行版的源码
截止本文时, Openwrt公开发行的稳定版为 OpenWrt 10.03 "backfire"。此版本是最稳定的,但也许不包括最新更新的补丁或最新编写的出的新功能。
下述代码即举例说明了通过svn从brandkfire获得backfire源代码(此版本意思是从trunk分支的补丁也在backfire版本中了,即包含修复补丁):
# mkdir OpenWrt/
# cd OpenWrt/
# svn co svn://svn.openwrt.org/openwrt/branches/backfire

注解: 上述svn命令将在当前目录创建一个 OpenWrt/backfire/ 子目录,此目录包含此命令获取到的源代码。
您也可以通过下述命令,下载不含修复补丁的backfire的原版源码:
# svn co svn://svn.openwrt.org/openwrt/tags/backfire_10.03

使用开发版源代码
当前的开发版本分支(trunk)已包含最新的实验补丁。此分支或许还突破了Openwrt原来所不支持的硬件设备的限制哦,惊喜的同时也有风险存在。因此,编译trunk版,慎之~
# mkdir OpenWrt/
# cd OpenWrt/
# svn co svn://svn.openwrt.org/openwrt/trunk/

更多详细资料详见: https://dev.openwrt.org/wiki/GetSource.
跟进并更新源代码
因Openwrt的源代码随时都会变动,故此命令将确保您所获取得到的源码的最新性。下述假设您用的是backfire版本的源码:
## Here, backfire is the directory name of the current release branch you're tracking
# cd OpenWrt/backfire/
# svn up

'svn up' 命令用于更新SVN上更新了,但本地尚未更新的这部分源代码(本人实践证明此命令会将本地源码与SVN上的源码先比较,若SVN有更新才会下载更新的部分,很实用的一个命令)。如果未指定目标路径,则此命令将更新当前目录及当前目录的子目录内的源码。
Feeds下载
Feeds即为包含到你的OpenWrt环境中的额外软件包的索引之类的。(feed译名很多,莫衷一是,至2008年底为止,还没有一个十分通用而备受认可的中文译名;所以此文当中我们用英文feed来称呼)。 最主要的Feeds有以下三个:
'packages' - 路由的基本功能,
'LuCI' - OpenWrt默认的GUI(WEB管理界面), 及
'Xwrt' - 其他的GUI。
一般情况,你至少需要含 'packages' 和 'LuCI'两个Feeds。
下载完feeds之后, (为编译OpenWrt的recipies额外的预定义包) 您可以检查哪些feeds要包括在内。编辑在你的编译环境的根目录下的'feeds.conf.default'文件。
然后使用下列命令开始下载(注:可能你需要先运行cd trunk进入trunk目录才能成功执行下列命令):
# ./scripts/feeds update -a

在此之后,下载的软件包需要安装。亦即指的下边的命令啦。若路过下边的install命令则后续make menuconfig将无法成功执行!(注:可能你需要先运行cd trunk进入trunk目录才能成功执行下列命令):
# ./scripts/feeds install -a

只需编辑Feeds的配置文件或运行更新命令,即可很方便地更新或添加新的实验性的packages到源码中并编译到OpenWrt固件去。
注意:请老坛友及旧的新闻组成员们注意了,这一步取代了创建符号链接symlinks的老办法哦。
更新Feeds
诸如此类源码,你得定期更新Feeds。 通过如上相同的命令:
# ./scripts/feeds update -a
# ./scripts/feeds install -a

注意:若你清楚地知道你不需添加新的packages到menuconfig中去,那么你可在更新Feeds时跳过这一步。
生成配置
You may not have to make configration always after updating sources and feeds, but making it ensures that all packages from source and feeds are correctly included in your build configuration.
Defconfig
下一步是检查编译环境,若可进行编译则生成默认配置:
# make defconfig

若defconfig回显提示缺少软件包或编译库等依赖,则按提示安装所缺软件包或库等即可,不难的,细心点就行。
Menuconfig
menuconfig是一个基于文本的工具,它处理选择的目标(需要还是不需要)、编译生成软件包(openwrt下是IPKG格式)以及内核选项(编译成模块还是内核)等等
# make menuconfig

在你离开并保存配置文件(默认都是.config)后,将自动配置依赖关系,让你可以着手编译更新的固件。
大众可通过'menuconfig'这一简单的图形化的配置环境,非常轻松地编译出专属您本人的OpenWrt固件。
可以用'menuconfig',以开发的意图来编译OpenWrt的固件,为自己(个人)创造一个结构简单但是功能强大的环境。(上句实在难翻译,只能意译。并且也请大家都学习下编译OP固件,让以OP固件盈利的人丢掉那肮脏的饭碗!)
Menuconfig或多或少有些难以说明的地方,即使是最专业的配置,也可以寻求帮助并加以解决。 需要你指定何种目标平台,要包含的package软件包和内核模块等均需要你指定,配置标准的过程中会包括修改:
目标平台(即路由器何种架构,BCM呢还是AR均可选择)
选择要包含的package软件包
构建系统设置
内核模块
Target system is selected from the extensive list of supported platforms, with the numerous target profiles – ranging from specific devices to generic profiles, all depending on the particular device at hand. Package selection has the option of either 'selecting all package', which might be un-practical in certain situation, or relying on the default set of packages will be adequate or make an indivial selection. It is here needed to mention that some package combinations might break the build process, so it can take some experimentation before the expected result is reached. Added to this, the OpenWrt developers are themselves only maintaining a smaller set of packages – which includes all default packages – but, the feeds-script makes it very simple to handle a locally maintained set of packages and integrate them in the build-process.
假如你需要LuCI, 要到Administration 菜单里,在LuCI组件的子菜单下, 并选择: luci-admin-core, luci-admin-full, and luci-admin-mini组件包。
假如你不需要PPP,你可到Network菜单下取消对它的选择,以便编译时不包含此组件。
Menuconfig用法: 确保这些组件包是以 '*'星号标记而不是 'M'标记。
如果你是以星号 '*'标记该组件包, 则该组件包将编译进最终生成的OpenWrt固件中。
如果你仅以 'M'标记该组件包, 则该组件包将不会编译进最终生成的OpenWrt固件中。
The final step before the process of compiling the intended image(s) is to exit 'menuconfig' – this also includes the option to save a specific configuration or load an already existing, and pre-configured, version.
Exit and save.
Source Mirrors
The 'Build system settings' include some efficient options for changing package locations which makes it easy to handle a local package set:
Local mirror for source packages
Download folder
In the case of the first option, you simply enter a full URL to the web or ftp server on which the package sources are hosted. Download folder would in the same way be the path to a local folder on the build system (or network). If you have a web/ftp-server hosting the tarballs, the OpenWrt build system will try this one before trying to download from the location(s) mentioned in the Makefiles . Similar if a local 'download folder', residing on the build system, has been specified. The 'Kernel moles' option is required if you need specific (non-standard) drivers and so forth – this would typically be things like moles for USB or particular network interface drivers etc.
编译固件
万事具备,只欠东风,通过下面简单的make命令来编译:
# make

在多核电脑中编译
具有多核CPU处理器的电脑进行编译,使用下述参数可令编译过程加速。 常规用法为 <您cpu处理器的数目 + 1> – 例如使用3进程来编译 (即双核CPU), 命令及参数如下:
# make -j 3

后台编译
若你在这个系统内编译OpenWrt的同时还处理其他,可以让闲置的I/O及CPU来在后台编译固件 (双核CPU):
# ionice -c 3 nice -n 20 make -j 2

编译简单的基本的软件包
当你为OpenWrt开发或打包软件包,编译简单的基本的软件包可以很轻易地编译该软件包 (例如, 软件包cups):
# make package/cups/compile V=99

一个在Feeds里的软件包大约是这样子的:
# make package/feeds/packages/ndyndns/compile V=99

编译错误
如果因某种不知道的原因而编译失败,下面有种简单的方法来得知编译到底错在哪里了:
# make V=99 2>&1 |tee build.log |grep -i error

上述编译命令意为:V99参数,将出错信息保存在build.log,生成输出完整详细的副本(with stdout piped to stderr),只有在屏幕上显示的错误。
举例说明:
# ionice -c 3 nice -n 20 make -j 2 V=99 CONFIG_DEBUG_SECTION_MISMATCH=y 2>&1 \
|tee build.log |egrep -i '(warn|error)'

The above saves a full verbose of the build output (with stdout piped to stderr) in build.log and outputs only warnings and errors while building using only background resources on a al core CPU.
一键编译
即使用脚本来编译Openwrt固件。许多朋友编译Openwrt是用的脚本来编译的,详见: https://forum.openwrt.org/viewtopic.php?id=28267
生成的固件在哪
编译成功后所生成的固件文件位于bin目录下,可用如下命令查看:
# cd bin/
# ls */

清理
编译OpneWrt时你可能需要一个清洁干净的编译环境。 以下操作有利用编译工作:
清洁
清洁trunk/ 目录,在编译过程中使用“make clean”命令即可。 此命令将删除bin目录和build_dir目录下的所有文件及文件夹
## See CAUTION below
# make clean

⑶ 如何编译linux版本

编译安装内核
下载并解压内核
内核下载官网:https://www.kernel.org/
解压内核:tar xf linux-2.6.XX.tar.xz
定制内核:make menuconfig
参见makefile menuconfig过程讲解
编译内核和模块:make
生成内核模块和vmlinuz,initrd.img,Symtem.map文件
安装内核和模块:sudo make moles_install install
复制模块文件到/lib/moles目录下、复制config,vmlinuz,initrd.img,Symtem.map文件到/boot目录、更新grub
其他命令:
make mrprobe:命令的作用是在每次配置并重新编译内核前需要先执行“make mrproper”命令清理源代码树,包括过去曾经配置的内核配置文件“.config”都将被清除。即进行新的编译工作时将原来老的配置文件给删除到,以免影响新的内核编译。
make dep:生成内核功能间的依赖关系,为编译内核做好准备。

几个重要的Linux内核文件介绍
config
使用make menuconfig 生成的内核配置文件,决定将内核的各个功能系统编译进内核还是编译为模块还是不编译。
vmlinuz 和 vmlinux
vmlinuz是可引导的、压缩的内核,“vm”代表“Virtual Memory”。Linux 支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制,Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,vmlinuz的建立有两种方式:一是编译内核时通过“make zImage”创建,zImage适用于小内核的情况,它的存在是为了向后的兼容性;二是内核编译时通过命令make bzImage创建,bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”,bzImage中的b是“big”意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码,所以你不能用gunzip 或 gzip –dc解包vmlinuz。 内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage 或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。 vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
initrd.img
initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。比如initrd- 2.4.7-10.img主要是用于加载ext3等文件系统及scsi设备的驱动。如果你使用的是scsi硬盘,而内核vmlinuz中并没有这个 scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/moles下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题,initrd-2.4.7-10.img是用gzip压缩的文件。initrd映象文件是使用mkinitrd创建的,mkinitrd实用程序能够创建initrd映象文件,这个命令是RedHat专有的,其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd
System.map是一个特定内核的内核符号表,由“nm vmlinux”产生并且不相关的符号被滤出。
下面几行来自/usr/src/linux-2.4/Makefile:
nm vmlinux | grep -v '(compiled)|(.o$$)|( [aUw] )|(..ng$$)|(LASH[RL]DI)' | sort > System.map
在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号, Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名,比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。 对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,而内核运行时使用地址。 然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号,这由符号表来完成,符号表是所有符号连同它们的地址的列表。
Linux 符号表使用到2个文件: /proc/ksyms 、System.map 。/proc/ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看 出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map 具有的是错误的符号信息,每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核本身并不真正使用System.map,但其它程序比如klogd, lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。 另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。 Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map: /boot/System.map 、/System.map 、/usr/src/linux/System.map
System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。
makefile menuconfig过程讲解
当我们在执行make menuconfig这个命令时,系统到底帮我们做了哪些工作呢?这里面一共涉及到了一下几个文件我们来一一探讨
Linux内核根目录下的scripts文件夹
arch/$ARCH/Kconfig文件、各层目录下的Kconfig文件
Linux内核根目录下的makefile文件、各层目录下的makefile文件
Linux内核根目录下的的.config文件、arch/$ARCH/configs/下的文件
Linux内核根目录下的 include/generated/autoconf.h文件
1)scripts文件夹存放的是跟make menuconfig配置界面的图形绘制相关的文件,我们作为使用者无需关心这个文件夹的内容
2)当我们执行make menuconfig命令出现上述蓝色配置界面以前,系统帮我们做了以下工作:
首先系统会读取arch/$ARCH/目录下的Kconfig文件生成整个配置界面选项(Kconfig是整个linux配置机制的核心),那么ARCH环境变量的值等于多少呢?它是由linux内核根目录下的makefile文件决定的,在makefile下有此环境变量的定义:
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
..........
export KBUILD_BUILDHOST := $(SUBARCH)
ARCH ?= $(SUBARCH)
CROSS_COMPILE ?=
或者通过 make ARCH=arm menuconfig命令来生成配置界面
比如教务处进行考试,考试科数可能有外语、语文、数学等科,这里我们选择了arm科可进行考试,系统就会读取arm/arm/kconfig文件生成配置选项(选择了arm科的卷子),系统还提供了x86科、milps科等10几门功课的考试题
3)假设教务处比较“仁慈”,为了怕某些同学做错试题,还给我们准备了一份参考答案(默认配置选项),存放在arch/$ARCH/configs/目录下,对于arm科来说就是arch/arm/configs文件夹:

此文件夹中有许多选项,系统会读取哪个呢?内核默认会读取linux内核根目录下.config文件作为内核的默认选项(试题的参考答案),我们一般会根据开发板的类型从中选取一个与我们开发板最接近的系列到Linux内核根目录下(选择一个最接近的参考答案)
4).config
假设教务处留了一个心眼,他提供的参考答案并不完全正确(.config文件与我们的板子并不是完全匹配),这时我们可以选择直接修改.config文件然后执行make menuconfig命令读取新的选项。但是一般我们不采取这个方案,我们选择在配置界面中通过空格、esc、回车选择某些选项选中或者不选中,最后保存退出的时候,Linux内核会把新的选项(正确的参考答案)更新到.config中,此时我们可以把.config重命名为其它文件保存起来(当你执行make distclean时系统会把.config文件删除),以后我们再配置内核时就不需要再去arch/arm/configs下考取相应的文件了,省去了重新配置的麻烦,直接将保存的.config文件复制为.config即可.
5)经过以上两步,我们可以正确的读取、配置我们需要的界面了,那么他们如何跟makefile文件建立编译关系呢?当你保存make menuconfig选项时,系统会除了会自动更新.config外,还会将所有的选项以宏的形式保存在Linux内核根目录下的 include/generated/autoconf.h文件下

内核中的源代码就都会包含以上.h文件,跟宏的定义情况进行条件编译。
当我们需要对一个文件整体选择如是否编译时,还需要修改对应的makefile文件,例如:

我们选择是否要编译s3c2410_ts.c这个文件时,makefile会根据CONFIG_TOUCHSCREEN_S3C2410来决定是编译此文件,此宏是在Kconfig文件中定义,当我们配置完成后,会出现在.config及autconf中,至此,我们就完成了整个linux内核的编译过程。
最后我们会发现,整个linux内核配置过程中,留给用户的接口其实只有各层Kconfig、makefile文件以及对应的源文件。
比如我们如果想要给内核增加一个功能,并且通过make menuconfig控制其声称过程
首先需要做的工作是:修改对应目录下的Kconfig文件,按照Kconfig语法增加对应的选项;
其次执行make menuconfig选择编译进内核或者不编译进内核,或者编译为模块,.config文件和autoconf.h文件会自动生成;
最后修改对应目录下的makefile文件完成编译选项的添加;
最后的最后执行make命令进行编译。
Kconfig和Makefile
Linux内核源码树的每个目录下都有两个文档Kconfig和Makefile。分布到各目录的Kconfig构成了一个分布式的内核配置数据库,每个Kconfig分别描述了所属目录源文档相关的内核配置菜单。在执行内核配置make menuconfig时,从Kconfig中读出菜单,用户选择后保存到.config的内核配置文档中。在内核编译时,主Makefile调用这 个.config,就知道了用户的选择。这个内容说明了,Kconfig就是对应着内核的每级配置菜单。
假如要想添加新的驱动到内核的源码中,要修改Kconfig,这样就能够选择这个驱动,假如想使这个驱动被编译,则要修改Makefile。添加新 的驱动时需要修改的文档有两种(如果添加的只是文件,则只需修改当前层Kconfig和Makefile文件;如果添加的是目录,则需修改当前层和目录下 的共一对Kconfig和Makefile)Kconfig和Makefile。要想知道怎么修改这两种文档,就要知道两种文档的语法结构,Kconfig的语法参见参考文献《【linux-2.6.31】kbuild》。
Makefile 文件包含 5 部分:
Makefile 顶层的 Makefile
.config 内核配置文件
arch/$(ARCH)/Makefile 体系结构 Makefile
scripts/Makefile.* 适用于所有 kbuild Makefile 的通用规则等
kbuild Makefiles 大约有 500 个这样的文件
顶层 Makefile 读取内核配置操作产生的.config 文件,顶层 Makefile 构建两个主要的目标:vmlinux(内核映像)和 moles(所有模块文件)。它通过递归访问内核源码树下的子目录来构建这些目标。访问哪些子目录取决于内核配置。顶层 Makefile 包含一个体系结构 Makefile,由 arch/$(ARCH)/Makefile 指定。体系结构 Makefile 文件为顶层 Makefile 提供了特定体系结构的信息。每个子目录各有一个 kbuild文件和Makefile 文件来执行从上层传递下来的命令。kbuild和Makefile文件利用.config 文件中的信息来构造由 kbuild 构建内建或者模块对象使用的各种文件列表。scripts/Makefile.*包含所有的定义/规则,等等。这些信息用于使用 kbuild和 Makefile 文件来构建内核。Makefile的语法参见参考文献《【linux-2.6.31】kbuild》。

参考文献
【linux-2.6.31】内核编译指南.pdf
【linux-2.6.31】kbuild.pdf
Linker script in Linux.pdf
linux内核的配置机制及其编译过程
Linux内核编译过程详解
Linux Kconfig及Makefile学习

⑷ 如何在windows下编译Chrome源代码

一,编译之前的准备。
1) 了解代码组织结构。
Chrome source非常庞大,并且在其主目录下还包含有工具和组件,任何一个工具和组件也附带有其源代码。首先得熟悉这些源代码的组织结构,在http://src.chromium.org/svn/中包含如下子目录:releases,曾经发布过的chrome源代码的正式版本;trunk,当前最新的源代码。由于releases中的代码比较旧,这里就不做说明了,只说明trunk的结构。在trunk下面有3个重要的目录,deps包含了chrome编译和运行所需要的全部组件的代码。src里面包含的则是chrome的主程序的代码,tools包含的是下载和配置编译所需要的第三方工具的压缩包和源代码,其中就有svn和python这2个比较重要的工具,后面再详细介绍。暂时做这样一个简单的介绍,因为其组织结构比较负责,以后再作补充斧正。

2)如何下载和同步源代码。
首先谈谈下载:
1,最简单的方法是从chrome官网上直接下载源代码压缩包,地址是http://build.chromium.org/buildbot/archives/chromium_tarball.html。

2,或者采用svn从http://src.chromium.org/svn/trunk/src这个地方heckout,这要求你先在本地建一个源代码的主目录。

3,另外一个办法则是采用google提供的一个部署工具depot_tools。虽然这几种办法都可下载完整的源代码,但目前的情况是:chrome基于Visual Stdio 2005 进行编译,如果顺利完成编译工作,自然少不了sln文件,较早的源代码中包含有现成的sln和vcproject文件,但后来做了修改,这些文件被抛弃掉,Google自己开发了一种脚本工具叫做GYP,这个工具采用python编写,GYP采用了自定义的一套规则,用于生成各种工程文件。而关键的python则包含于depot_tools中,因此不论采用什么方法下载的代码,都得下载depot_tools这个工具,以获得必须的工程文件。
depot_tools位于 http://src.chromium.org/svn/trunk/tools 下面,包括一个目录和一个zip格式的压缩包。

3)关于编译器
前面提到Chrome采用Visual Stdio 2005进行编译,根据http://dev.chromium.org的说明,需进行如下操作正常编译
a, 安装Visual Studio 2005.
b, 安装Visual Studio 2005 Service Packe 1.
c, 安装Visual Studio Hotfix 947315.
d, 如果是vista系统,还需安装Visual Studio 2005 Service Packe 1 Update for Windows Vista.
e, 安装Windows 2008 SDK,如果是Visual Studio 2008则不需要这一步。
f, 配置Windows 2008 SDK,使2008 SDK成为首选开发库,以获得一些新功能和特性。办法是在开始->程序->Microsoft Windows SDK v6.1 > Visual Studio Registration > Windows SDK Configuration Tool,选择make current按钮。也可以在VS里面手动配置include和libary路径,效果是一样的。

二,如何配置工程文件
1,如果是采用depot_tools,那么从代码下载到生成sln文件会自动完成。其步骤是
(1)下载depot_tools到本地存储,假设位于d:/depot_tools.
(2)将d:/depot_tools添加到系统环境变量中。
(3)创建一个源代码根目录,假设为 d:/chrome,目录不得包含空格。
(4)在命令行下切换当前目录到d:/chrome。
(5)执行命令 gclient config http://src.chromium.org/svn/trunk/src ,该命令会首先下载svn和python分别到d:/depot_tools/svn_bin和d:/depot_tools/python_bin。
(6)执行命令 gclient sync 这个命令会调用svn同步源代码。这个过程会比较漫长。全部完成之后全部源代码就保存在d:/chrome里面。未编译的代码大约有4个G左右,过程将十分漫长。这样获得的源代码已经包含所有的工程文件,可直接打开。

重点说明一下gclient,它实际上是一个批处理文件,它主要做了如下一些事情,首先设置环境变量,如代码根目录,工具根目录等。其次调用win_tools.bat从服务器下载svn和python。最后调用python.exe对Chrome.gyp进行解析生成所有工程文件。
另外需要说明的是,gclient sync的过程非常漫长,根据命令行的提示来看总共需要同步67个项目(不是工程),期间可能会因为一些原因导致错误而退出这个过程,需要继续调用sync。比如网络出现故障svn会多次进入sleep状态然后重试,如果多次失败就会报错退出,还有的情况是某些子目录的属性问题无法同步,可根据提示进行操作。还有个目前新出现的问题,下面2个目录“src/webkit/data/layout_tests/LayoutTests”和“src/third_party/WebKit/LayoutTests”的源代码是从src.webkit.org签出来的,但是这个网站目前存在问题无法签出代码, 需要屏蔽掉这2个目录,由于里面是测试代码,即使丢弃也不会影响整个工程的编译,方法是打开trunk下面的.gclient文件,向里面添加如下内容
"custom_deps" : {
"src/webkit/data/layout_tests/LayoutTests":None,
"src/third_party/WebKit/LayoutTests":None,
},

这样svn就能完成代码的同步了。最后gclient会调用depot_tools/python_bin/python.exe 对 src/build/gyp_
chromium进行处理,这样就得到了所有的sln和vcproject文件。

2,如果是下载的代码压缩包或者checkout的代码,代码目录里面没有sln文件,这个时候需要调用命令行进入源代码根目录,然后执行命令 gclient runhooks --force,命令执行后会直接对Chrome.gyp进行解析,生成sln文件。

在实际下载过程中,最开始的时候我用TortoiseSVN从http://src.chromium.org/svn/trunk/src checkout源代码,但是得到的代码只有几百兆,执行gclient runhooks --force命令后也没有找到sln文件,具体原因未知,不建议使用此方式。而直接下载代码压缩包的方式没有尝试过,不知道是否可行。因此最稳妥的方法还是使用depot_tools来部署和处理源代码。

三 编译工程
启动Visual Studio 2005打开 src/chrome/browser/chrome.sln,或者打开src/build/all.sln,如果打开的是chrome.sln里面包含480个工程,而all.sln则包含507个工程,一些09年的编译说明提到有300左右的工程,可见chrome的代码变动比较大。对整个解决方案进行编译,打开需要2个小时才能完成编译,视硬件环境而定,内存越大越快,推荐4G以上内存,酷睿2核或者4核。编译完成以后据说会占用30G的空间。编译后的文件位于 d:/chorme/chrome/debug 目录或者 d:/chorme/chrome/release目录下。

四 chrome涉及的开源项目

Chrome 采用了很多开源项目,这里把它们列出来以备后用,目前Chrome涉及25个开源代码:
1、Google Breakpad
/src/breakpad
开源的跨开台程序崩溃报告系统。
2、Google URL
/src/googleurl
Google小巧的URL解析整理库。
3、Skia
/src/skia
矢量图引擎。
4、Google v8
/src/v8
Google开源的JavaScript引擎。V8实现了ECMA-262第三版的ECMAScript规范,可运行于Windows XP 和 Vista, Mac OS X 10.5 (Leopard), 及 Linux等基于IA-32 或 ARM 的系统之上。V8可单独运行也可嵌入到任何C++程序中。
5、Webkit
/src/webki
开源的浏览器引擎
6、Netscape Portable Runtime (NSPR)
/src/base/third_party/nspr
Netscape Portable Runtime (NSPR) 提供了系统级平台无关的API及类似libc的函数。
7、Network Security Services (NSS)
/src/base/third_party/nss
Network Security Services (NSS) 一套用于支持服务器端与客户端安全开发的跨平台函数库。程序通过NSS可支持SSL v2 and v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS #12, S/MIME, X.509 v3 认证及其它一些安全标准。
8、Hunspell
/src/chrome/third_party/hunspell
Spell checker and morphological analyzer library and program designed for languages with rich morphology and complex word compounding or character encoding.
9、Windows Template Library
/src/chrome/third_party/wtl
用于开发Windows程序与UI组件的C++ library。WTL扩展了ATL (Active Template Library) 并提供一套用于controls, dialogs, frame windows, GDI objects等开发的类。
10、Google C++ Testing Framework
/src/testing/gtest
Google用于编写C++测试的基于xUnit架构的框架,可用于多种平台上:Linux, Mac OS X, Windows, Windows CE, and Symbian。支持自动测试发现,有一套丰富的Assertions断言,用于可自定义断言,death tests, fatal and non-fatal failures, various options for running the tests, and XML test report generation.
11、bsdiff 与 bspatch
/src/third_party/bsdiff 及 /src/third_party/bspatch
bsdiff 与 bspatch 用于为二进制文件生成补丁。
12、bzip2
/src/third_party/bzip2
bzip2使用Burrows-Wheeler block sorting text compression 算法与Huffman编码压缩文件。
13、International Components for Unicode (ICU)
/src/third_party/icu38
ICU是一套成熟并被广泛使用的C/C++ 及 Java 库,可为软件提供Unicode与全球化支持。
14、libjpeg
/src/third_party/libjpeg
用于处理JPEG (JFIF)图像格式的库。
15、libpng
/src/third_party/libpng
PNG图像格式库。支持绝大部分的PNG特性,可扩展。已经被广泛地使用了13年以上了。
16、libxml
/src/third_party/libxml
C语言的XML解析库。
17、libxslt
/src/third_party/libxslt
C语言的XSLT库。
18、LZMA
/src/third_party/lzma_sdk
LZMA为7-Zip软件中7z格式压缩所使用的压缩算法,有很好的压缩效果。
19、stringencoders
/src/third_party/modp_b64
一系列高性能的c-string转换函数,比如:base 64 encoding/decoding。通常比其标准实现快两倍以上。
20、Netscape Plugin Application Programming Interface (NPAPI)
/src/third_party/npapi
多种浏览器使用的跨平台插件架构。
21、Pthreads-w32
/src/third_party/pthread
用于编写多线程程序的API
22、SCons - a software construction tool
/src/third_party/scons
开源的软件构建工具——下一代的编译工具。可以认为SCons是改进过的跨平台配上autoconf/automake与ccache的Make工具的子系统。
23、sqlite
/src/third_party/sqlite
大名鼎鼎的嵌入式数据库引擎。自管理、零配置、无需服务器、支持事务。
24、TLS Lite
/src/third_party/tlslite
SSL 3.0, TLS 1.0, and TLS 1.1的Python免费实现库。TLS Lite支持这些安全验证方式:SRP, shared keys, and cryptoIDs in addition to X.509 certificates。注:Chrome并不包涵Python。TLS Lite用于Chrome开发过程中的代码覆盖、依赖检查、网页加载时间测试及生成html结果比较等。
25、zlib
/src/third_party/zlib
zlib为一套用于任意平台与机器的无损数据压缩的库,它免费、自由、无任何法律专利问题。

⑸ proteus编译器怎么安装

⑹ vs2022为什么会在D盘根目录下生成windows kits文件

你安装的时候选择了windows的SKD,就会有这个文件夹,但是目录是可以修改的

⑺ 无法加载JIT编译器(CLR.DLL):文件可能丢失或损坏,请重新检查或重新安装,请问这个问题怎么解决!

您好
估计您的戴尔电脑系统有故障,您可以恢复出厂设置尝试
方法如下:(1)、开机进入系统前,按F8,进入Windows 7的高级启动选项,选择“修复计算机”。(2)、选择键盘输入方法。(3)、如果有管理员密码,需要输入;如果没有设置密码,直接“确定”即可。(4)、进入系统恢复选项后,选择“Dell DataSafe 还原和紧急备份”。(5)、选择“选择其他系统备份和更多选项”,点击“下一步”。(6)、选择“还原我的计算机”,点击“下一步”。(7)、选择正确的出厂映像后,点击“下一步”就可以开始恢复系统到出厂状态。注意,在恢复过程中,笔记本需要连接适配器。完成后,重启电脑即可。

阅读全文

与根目录下编译器如何保存编译文件相关的资料

热点内容
奥维坐标怎么加密 浏览:720
常用的负载均衡算法 浏览:405
java万年历源码 浏览:881
如何将安卓手机搬家到苹果手机 浏览:440
怎么改wifi加密方式 浏览:415
pic单片机串口 浏览:256
扰流算法 浏览:425
什么服务器可以覆盖城市 浏览:562
扫毒3完整版免费观看 浏览:599
有什么都精通的程序员吗 浏览:848
风险app在哪里下载 浏览:69
在线免费观看网站 浏览:836
国外男男片 浏览:335
复杂零件加工编程 浏览:796
pdf如何加深颜色 浏览:777
android文件删除命令 浏览:915
快播 浏览:622
云服务器测试作业 浏览:737
书签怎么移动到文件夹 浏览:577
iosoppo怎么把数据传输到安卓 浏览:236