导航:首页 > 源码编译 > 常用的负载均衡算法

常用的负载均衡算法

发布时间:2024-06-29 00:10:47

⑴ 分布式系统常用的一致性算法有哪些

在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括: 轮循算法(Round Robin)、哈希算法(HASH)、最少连接算法(Least Connection)、响应速度算法(Response Time)、加权法(Weighted )等。其中哈希算法是最为常用的算法. 典型的应用场景是: 有N台服务器提供缓存服务,需要对服务器进行负载均衡,将请求平均分发到每台服务器上,每台机器负责1/N的服务。 常用的算法是对hash结果取余数 (hash() mod N):对机器编号从0到N-1,按照自定义的hash()算法,对每个请求的hash()值按N取模,得到余数i,然后将请求分发到编号为i的机器。但这样的算法方法存在致命问题,如果某一台机器宕机,那么应该落在该机器的请求就无法得到正确的处理,这时需要将当掉的服务器从算法从去除,此时候会有(N-1)/N的服务器的缓存数据需要重新进行计算;如果新增一台机器,会有N /(N+1)的服务器的缓存数据需要进行重新计算。对于系统而言,这通常是不可接受的颠簸(因为这意味着大量缓存的失效或者数据需要转移)。那么,如何设计一个负载均衡策略,使得受到影响的请求尽可能的少呢? 在Memcached、Key-Value Store、Bittorrent DHT、LVS中都采用了Consistent Hashing算法,可以说Consistent Hashing 是分布式系统负载均衡的首选算法。 1、Consistent Hashing算法描述 下面以Memcached中的Consisten Hashing算法为例说明。 由于hash算法结果一般为unsigned int型,因此对于hash函数的结果应该均匀分布在[0,232-1]间,如果我们把一个圆环用232 个点来进行均匀切割,首先按照hash(key)函数算出服务器(节点)的哈希值, 并将其分布到0~232的圆上。 用同样的hash(key)函数求出需要存储数据的键的哈希值,并映射到圆上。然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器(节点)上。 Consistent Hashing原理示意图 新增一个节点的时候,只有在圆环上新增节点逆时针方向的第一个节点的数据会受到影响。删除一个节点的时候,只有在圆环上原来删除节点顺时针方向的第一个节点的数据会受到影响,因此通过Consistent Hashing很好地解决了负载均衡中由于新增节点、删除节点引起的hash值颠簸问题。 Consistent Hashing添加服务器示意图 虚拟节点(virtual nodes):之所以要引进虚拟节点是因为在服务器(节点)数较少的情况下(例如只有3台服务器),通过hash(key)算出节点的哈希值在圆环上并不是均匀分布的(稀疏的),仍然会出现各节点负载不均衡的问题。虚拟节点可以认为是实际节点的复制品(replicas),本质上与实际节点实际上是一样的(key并不相同)。引入虚拟节点后,通过将每个实际的服务器(节点)数按照一定的比例(例如200倍)扩大后并计算其hash(key)值以均匀分布到圆环上。在进行负载均衡时候,落到虚拟节点的哈希值实际就落到了实际的节点上。由于所有的实际节点是按照相同的比例复制成虚拟节点的州胡氏,因此解决了节点数较少的情况下哈希值在圆环上均匀分布的问题。 虚拟节点对Consistent Hashing结果的影响 从上图可以看出,在节点数为10个的情况下,每个实际节点的虚拟节点数为实际做团节点的100-200倍的时候,结果还是很均衡的。 第3段中有这些文字:“但这样的算法方法存在致命问题,如果某一台机器宕机,那么应该落在该机器的请求就无法册散得到正确的处理,这时需要将当掉的服务器从算法从去除,此时候会有(N-1)/N的服务器的缓存数据需要重新进行计算;” 为何是 (N-1)/N 呢?解释如下: 比如有 3 台机器,hash值 1-6 在这3台上的分布就是: host 1: 1 4 host 2: 2 5 host 3: 3 6 如果挂掉一台,只剩两台,模数取 2 ,那么分布情况就变成: host 1: 1 3 5 host 2: 2 4 6 可以看到,还在数据位置不变的只有2个: 1,2,位置发生改变的有4个,占共6个数据的比率是 4/6 = 2/3这样的话,受影响的数据太多了,势必太多的数据需要重新从 DB 加载到 cache 中,严重影响性能 【consistent hashing 的办法】 上面提到的 hash 取模,模数取的比较小,一般是负载的数量,而 consistent hashing 的本质是将模数取的比较大,为 2的32次方减1,即一个最大的 32 位整数。然后,就可以从容的安排数据导向了,那个图还是挺直观的。 以下部分为一致性哈希算法的一种PHP实现。点击下载

⑵ lvs负载均衡(简介,三种工作模式,四种常用算法)

一,lvs简介

LVS是linux Virtual Server的简称,也就是Linux虚拟服务器,是一个由章文嵩博士发起的自由软件项目,官方站点是: http://www.linuxvirtualserver.org 。现在LVS已经是Linux标准内核的一部分,在Linux2.4内核以前,使用LVS时必须重新编译内核以支持LVS功能模块,但是从Linux2.4内核心之后,已经完全内置了LVS的各个功能模块,无需给内核打任何补丁,可以直接使用LVS提供的各种功能。使用LVS技术要达到的目标是:通过LVS提供的负载均衡技术和Linux操作系统实现一个高性能,高可用的服务器群集,它具有良好的可靠性、可扩展性和可操作性。从而以兄棚野低廉的成本实现最优的服务性能。

二,三种工作模式

1、基于NAT的LVS模式负载均衡

也就是网络地址翻译技术实现虚拟服务器,当用户请求到达调度器时,调度器将请求报文的目标地址(即虚拟IP地址)改写成选定的Real Server地址,同时报文的目标端口也改成选定的Real Server的相应端口,***将报文请求发送到选定的Real Server。在服务器端得到数据后,Real Server返回数据给用户时,需要再次经过负载调度器将报文的源地址和源端口改成虚拟IP地址和相应端口,然后把数据发送给用户,完成整个负载调度过程。可以看出,在NAT方式下,用户请求和响应报文都必须经过Director Server地址重写,当用户请求越来越多时,调度器的处理能力将称为瓶颈。

2,基于TUN的LVS负载均衡

也就是IP隧道技术实现虚拟服务器。它的连接调度和管理与VS/NAT方式一样,只是它的报文转发方法不同,VS/TUN方式中,调度器采用IP隧道技术将用户请求转发到某个Real Server,而这个Real Server将直接响应用户的请求,不再经过前端调度器,此外,对Real Server的地域位置没有要求,可以和Director Server位于同一个网段,也可以是独立的一个网络。因此,在TUN方式中,调度器将只处理用户的报文请求,集群系统的吞吐量大大提高。

用的很少,图省略

3,基于DR的LVS负载均衡

也就是用直接路由技术实现虚拟服务器。它的连接调度和管理与VS/NAT和VS/TUN中的一样,但它的报文转发方法又有不同,VS/DR通过改写请求报文的MAC地址,将请求发送到Real Server,而Real Server将响应直接返回给客户,免去了VS/TUN中的IP隧道开销。这种方式是三种负载调度机制中性能最好的,但是必须要求Director Server与Real Server都有一块网卡连在同一物理网段上。

三,LVS负载均衡调度算法

上面我们谈到,负载调度器是根据各 个服务器的负载情况,动和或态地选择一台Real Server响应用户请求,那么动态选择是如何实现呢,其实也就是我们这里要说的负载调度算法,根据不同的网络服务需求和服务器配置,IPVS实现了如下 八种负载调度算法,这里我们详细讲述最常用的四种调度算法,剩余的四种调度算法请参考其它资料。

3.1  轮叫调度(Round Robin)

“轮叫”调度也叫1:1调度,调度器通过羡喊“轮叫”调度算法将外部用户请求按顺序1:1的分配到集群中的每个Real Server上,这种算法平等地对待每一台Real Server,而不管服务器上实际的负载状况和连接状态。

3.2  加权轮叫调度(Weighted Round Robin)

“加 权轮叫”调度算法是根据Real Server的不同处理能力来调度访问请求。可以对每台Real Server设置不同的调度权值,对于性能相对较好的Real Server可以设置较高的权值,而对于处理能力较弱的Real Server,可以设置较低的权值,这样保证了处理能力强的服务器处理更多的访问流量。充分合理的利用了服务器资源。同时,调度器还可以自动查询Real Server的负载情况,并动态地调整其权值。

3.3  最少链接调度(Least Connections)

“最少连接”调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用“最小连接”调度算法可以较好地均衡负载。

3.4  加权最少链接调度(Weighted Least Connections)

“加权最少链接调度”是“最少连接调度”的超集,每个服务节点可以用相应的权值表示其处理能力,而系统管理员可以动态的设置相应的权值,缺省权值为1,加权最小连接调度在分配新连接请求时尽可能使服务节点的已建立连接数和其权值成正比。

其它四种调度算法分别为:基于局部性的最少链接(Locality-Based Least Connections)、带复制的基于局部性最少链接(Locality-Based Least Connections with Replication)、目标地址散列(Destination Hashing)和源地址散列(Source Hashing),对于这四种调度算法的含义,本文不再讲述,如果想深入了解这其余四种调度策略的话,可以登陆LVS中文站点 zh.linuxvirtualserver.org,查阅更详细的信息。

⑶ 多台异地服务器如何实现负载均衡

一般用的就用简单的轮询就好了
调度算法
静态方法:仅根据算法本身实现调度;实现起点公平,不管服务器当前处理多少请求,分配的数量一致
动态方法:根据算法及后端RS当前的负载状况实现调度;不管以前分了多少,只看分配的结果是不是公平
静态调度算法(static Sche)(4种):
(1)rr (Round Robin) :轮叫,轮询
说明:轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。缺点:是不考虑每台服务器的处理能力。
(2)wrr (Weight Round Robin) :加权轮询(以权重之间的比例实现在各主机之间进行调度)
说明:由于每台服务器的配置、安装的业务应用等不同,其处理能力会不一样。所以,我们根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。
(3)sh (Source Hashing) : 源地址hash实现会话绑定sessionaffinity
说明:简单的说就是有将同一客户端的请求发给同一个real server,源地址散列调度算法正好与目标地址散列调度算法相反,它根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的并且没有超负荷,将请求发送到该服务器,否则返回空。它采用的散列函数与目标地址散列调度算法的相同。它的算法流程与目标地址散列调度算法的基本相似,除了将请求的目标IP地址换成请求的源IP地址。
(4)dh : (Destination Hashing) : 目标地址hash
说明:将同样的请求发送给同一个server,一般用于缓存服务器,简单的说,LB集群后面又加了一层,在LB与realserver之间加了一层缓存服务器,当一个客户端请求一个页面时,LB发给cache1,当第二个客户端请求同样的页面时,LB还是发给cache1,这就是我们所说的,将同样的请求发给同一个server,来提高缓存的命中率。目标地址散列调度算法也是针对目标IP地址的负载均衡,它是一种静态映射算法,通过一个散列(Hash)函数将一个目标IP地址映射到一台服务器。目标地址散列调度算法先根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
动态调度算法(dynamic Sche)(6种):
(1)lc (Least-Connection Scheling): 最少连接
说明:最少连接调度算法是把新的连接请求分配到当前连接数最小的服务器,最小连接调度是一种动态调度短算法,它通过服务器当前所活跃的连接数来估计服务器的负载均衡,调度器需要记录各个服务器已建立连接的数目,当一个请求被调度到某台服务器,其连接数加1,当连接中止或超时,其连接数减一,在系统实现时,我们也引入当服务器的权值为0时,表示该服务器不可用而不被调度。此算法忽略了服务器的性能问题,有的服务器性能好,有的服务器性能差,通过加权重来区分性能,所以有了下面算法wlc。
简单算法:active*256+inactive (谁的小,挑谁)
(2)wlc (Weighted Least-Connection Scheling):加权最少连接
加权最小连接调度算法是最小连接调度的超集,各个服务器用相应的权值表示其处理性能。服务器的缺省权值为1,系统管理员可以动态地设置服务器的权限,加权最小连接调度在调度新连接时尽可能使服务器的已建立连接数和其权值成比例。由于服务器的性能不同,我们给性能相对好的服务器,加大权重,即会接收到更多的请求。
简单算法:(active*256+inactive)/weight(谁的小,挑谁)
(3)sed (shortest expected delay scheling):最少期望延迟
说明:不考虑非活动连接,谁的权重大,我们优先选择权重大的服务器来接收请求,但会出现问题,就是权重比较大的服务器会很忙,但权重相对较小的服务器很闲,甚至会接收不到请求,所以便有了下面的算法nq。
基于wlc算法,简单算法:(active+1)*256/weight (谁的小选谁)
(4).nq (Never Queue Scheling): 永不排队
说明:在上面我们说明了,由于某台服务器的权重较小,比较空闲,甚至接收不到请求,而权重大的服务器会很忙,所此算法是sed改进,就是说不管你的权重多大都会被分配到请求。简单说,无需队列,如果有台real server的连接数为0就直接分配过去,不需要在进行sed运算。
(5).LBLC(Locality-Based Least Connections) :基于局部性的最少连接
说明:基于局部性的最少连接算法是针对请求报文的目标IP地址的负载均衡调度,主要用于Cache集群系统,因为Cache集群中客户请求报文的目标IP地址是变化的,这里假设任何后端服务器都可以处理任何请求,算法的设计目标在服务器的负载基本平衡的情况下,将相同的目标IP地址的请求调度到同一个台服务器,来提高服务器的访问局部性和主存Cache命中率,从而调整整个集群系统的处理能力。
(6).LBLCR(Locality-Based Least Connections with Replication) :基于局部性的带复制功能的最少连接
说明:基于局部性的带复制功能的最少连接调度算法也是针对目标IP地址的负载均衡,该算法根据请求的目标IP地址找出该目标IP地 址对应的服务器组,按“最小连接”原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器;若服务器超载,则按“最小连接”原则从这个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除, 以降低复制的程度。

⑷ 如何实现负载均衡,哪些算法可以实现

1、轮询调度

轮询调度算法就是以轮询的方式依次将请求调度到不同的服务器,即每次调度执行i = (i + 1) mod n,并选出第i台服务器。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。

2、最小连接调度

最小连接调度算法是把新的连接请求分配到当前连接数最小的服务器。最小连接调度是一种动态调度算法,它通过服务器当前所活跃的连接数来估计服务器的负载情况。

在实际实现过程中,一般会为每台服务器设定一个权重值,这就是加权最小连接

3、 基于局部性的最少链接(LBLC)

基于局部性的最少链接调度(以下简称为LBLC)算法是针对请求报文的目标IP地址的负载均衡调度,目前主要用于Cache集群系统,因为在Cache集群中客户请求报文的目标IP地址是变化的。

LBLC调度算法先根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器; 若服务器不存在,或服务器超载或有服务器处于其一半的工作负载,则用“最少链接”的原则选出一个可用的服务器,将请求发送到该服务器。

4、带复制的基于局部性最少链接(LBLCR)

带复制的基于局部性最少链接调度以下简称为LBLCR)算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。

LBLCR调度算法将“热门”站点映射到一组Cache服务器(服务器集合),当该“热门”站点的请求负载增加时,会增加集合里的Cache服务器,来处理不断增长的负载; 当该“热门”站点的请求负载降低时,会减少集合里的Cache服务器数目。

5、目标地址散列调度

目标地址散列调度算法是针对目标IP地址的负载均衡,但它是一种静态映射算法,通过一个散列(Hash)函数将一个目标IP地址映射到一台服务器。

目标地址散列调度算法先根据请求的目标IP地址,作为散列从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。

6、 源地址散列调度

和目标地址散列调度类似,唯一的区别是按照源地址为散列函数的散列键。

⑸ bbo有哪些负载均衡算法怎么实现的负载均衡算法bbo有几层

常见的有LVS、Nginx和HAProxy,者者介绍分别如下:
LVS:使用集群技术和Linux操作系统实现一个高性能、高可用的服务器,它具有很好的可伸缩性(Scalability)、可靠性(Reliability)和可管理性(Manageability),感谢章文嵩博士为我们提供如此强大实用的开源软件。
LVS的特点是:
1、抗负载能力强、是工作在网络4层之上仅作分发之用,没有流量的产生,这个特点也决定了它在负载均衡软件里的性能最强的;

2、配置性比较低,这是一个缺点也是一个优点,因为没有可太多配置的东西,所以并不需要太多接触,大大减少了人为出错的几率;
3、工作稳定,自身有完整的双机热备方案;
4、无流量,保证了均衡器IO的性能不会收到大流量的影响;

5、应用范围比较广,可以对所有应用做负载均衡;

6、软件本身不支持正则处理,不能做动静分离。

Nginx的特点是:
1、工作在网络的7层之上,可以针对http应用做一些分流的策略;
2、Nginx对网络的依赖非常小;
3、Nginx安装和配置比较简单,测试起来比较方便;
4、可以承担高的负载压力且稳定,一般能支撑超过几万次的并发量;
5、Nginx可以通过端口检测到服务器内部的故障,比如根据服务器处理网页返回的状态码、超时等等;
6、Nginx仅能支持http和Email;

HAProxy的特点是:
1、HAProxy是支持虚拟主机的;
2、能够补充Nginx的一些缺点比如Session的保持,Cookie的引导等工作;
3、支持url检测后端的服务器出问题的检测会有很好的帮助;
4、它跟LVS一样,本身仅仅就只是一款负载均衡软件;
5、HAProxy可以对Mysql读进行负载均衡,对后端的MySQL节点进行检测和负载均衡,不过在后端的MySQL slaves数量超过10台时性能不如LVS;
6、HAProxy的算法多;

⑹ nginx 负载均衡之一致性hash,普通hash

哈希负载均衡原理
  ngx_http_upstream_hash_mole支持普通的hash及一致性hash两种负载均衡算法,默认的是普通的hash来进行负载均衡。
  nginx 普通的hash算法支持配置http变量值作为hash值计算的key,通过hash计算得出的hash值和总权重的余数作为挑选server的依据;nginx的一致性hash(chash)算法则要复杂一些。这里会对一致性hash的机制原理作详细的说明。
一致性hash算法的原理
一致性hash用于对hash算法的改进,后端服务器在配置的server的数量发生变化后,同一个upstream server接收到的请求会的数量和server数量变化之间会有变化。尤其是在负载均衡配置的upstream server数量发生增长后,造成产生的请求可能会在后端的upstream server中并不均匀,有的upstream server负载很低,有的upstream server负载较高,这样的负载均衡的效果比较差,可能对upstream server造成不良的影响。由此,产生了一致性hash算法来均衡。
   那么为什么一致性hash算法能改善这种情况呢?这里引用网上资料的一致性hash算法的图例。
因为对于hash(k)的范围在int范围,所以我们将0~2^32作为一个环。其步骤为:
1,求出每个服务器的hash(服务器ip)值,将其配置到一个 0~2^n 的圆环上(n通常取32)。
2,用同样的方法求出待存储对象的主键 hash值,也将其配置到这个圆环上,然后从数据映射到的位置开始顺时针查找,将数据分布到找到的第一个服务器节点上。
其分布如图:

除了上边的优点,其实还有一个优点:对于热点数据,如果发现node1访问量明显很大,负载高于其他节点,这就说明node1存储的数据是热点数据。这时候,为了减少node1的负载,我们可以在热点数据位置再加入一个node,用来分担热点数据的压力。
雪崩效应

接下来我们来看一下,当有节点宕机时会有什么问题。如下图:

如上图,当B节点宕机后,原本存储在B节点的k1,k2将会迁移到节点C上,这可能会导致很大的问题。如果B上存储的是热点数据,将数据迁移到C节点上,然后C需要承受B+C的数据,也承受不住,也挂了。。。。然后继续CD都挂了。这就造成了雪崩效应。
上面会造成雪崩效应的原因分析:
如果不存在热点数据的时候,每台机器的承受的压力是M/2(假设每台机器的最高负载能力为M),原本是不会有问题的,但是,这个时候A服务器由于有热点数据挂了,然后A的数据迁移至B,导致B所需要承受的压力变为M(还不考虑热点数据访问的压力),所以这个失败B是必挂的,然后C至少需要承受1.5M的压力。。。。然后大家一起挂。。。
所以我们通过上面可以看到,之所以会大家一起挂,原因在于如果一台机器挂了,那么它的压力全部被分配到一台机器上,导致雪崩。

怎么解决雪崩问题呢,这时候需要引入虚拟节点来进行解决。
虚拟节点

虚拟节点,我们可以针对每个实际的节点,虚拟出多个虚拟节点,用来映射到圈上的位置,进行存储对应的数据。如下图:

如上图:A节点对应A1,A2,BCD节点同理。这时候,如果A节点挂了,A节点的数据迁移情况是:A1数据会迁移到C2,A2数据迁移到D1。这就相当于A的数据被C和D分担了,这就避免了雪崩效应的发送,而且虚拟节点我们可以自定义设置,使其适用于我们的应用。

ngx_http_upstream_consistent_hash
该模块可以根据配置参数采取不同的方式将请求均匀映射到后端机器,比如:

指令
语法:consistent_hash variable_name
默认值:none
上下文:upstream

配置upstream采用一致性hash作为负载均衡算法,并使用配置的变量名作为hash输入。

参考文档:
https://www.cnblogs.com/FengGeBlog/p/10615345.html
http://www.ttlsa.com/nginx/nginx-upstream-consistent-hash-mole/

阅读全文

与常用的负载均衡算法相关的资料

热点内容
威联通套件编译 浏览:231
清刻pdf 浏览:982
可编程延时发生器 浏览:93
滨州用服务器织梦要怎么上传文件 浏览:866
java7与java8 浏览:958
真空压缩袋什么材质好 浏览:935
excel批量见建文件夹 浏览:556
黑马程序员就业班笔记 浏览:370
单片机供电自锁电路设计 浏览:56
pythongui测试工具 浏览:834
哈曼l7功放编程 浏览:218
体温单片机 浏览:613
快捷键命令不能用了 浏览:347
边界层加密网格优点 浏览:236
linuxvi保存文件 浏览:535
把视频打包出文件夹是什么意思 浏览:446
如何在藏书馆app上注销账号 浏览:826
51单片机架构 浏览:897
安卓下载东西怎么弄 浏览:523
我的世界服务器地址13 浏览:311