导航:首页 > 源码编译 > 数据挖掘算法面试题

数据挖掘算法面试题

发布时间:2024-07-06 07:14:37

⑴ 数据挖掘需要哪些技能

编程语言


数据挖掘和数据分析不一样,数据分析可以利用一些现成的分析工具完成,但是数据挖掘绝大部分要依赖于编程,在数据挖掘领域常用的编程语言有R、python、C++、java等,R和python最受欢迎。


大数据处理框架


做数据挖掘不可避免的要接触大数据,目前常用的大数据框架就两个,Hadoop和Spark,Hadoop的原生开发语言是Java,资料多,Spark的原生开发语言是Scala,不过也有Python的API。


数据库知识


这个不用多说,既然是和数据打交道,数据库知识自然少不了,常见关系数据库和非关系数据库知识都要掌握,如果要处理大数量数据集,就得掌握关系型数据库知识,比如sql、oracle。


数据结构与算法


精通数据结构和算法对数据挖掘来说相当重要,在数据挖掘岗位面试中也是问的比较多的,数据结构包括数组,链表,堆栈,队列,树,哈希表,集合等,而常见的算法包括排序,搜索,动态编程,递归等。


机器学习/深度学习


机器学习是数据挖掘的最重要部分之一。 机器学习算法可建立样本数据的数学模型,来进行预测或决策, 深度学习是更广泛的机器学习方法系列中的一部分。这部分的学习主要分两块,一是掌握常见机器学习算法原理,二是应用这些算法并解决问题。


统计学知识


数据挖掘是一个交叉学科,不仅涉及编程和计算机科学,还涉及到多个科学领域,统计学就是不可获取的一部分,它可以帮我们更快的识别问题,区分因果关系和相关性。


关于数据挖掘需要哪些技能,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑵ 数据分析常见面试题有哪些

1、如何理解过拟合?


过拟合和欠拟合一样,都是数据挖掘的基本概念。过拟合指的就是数据训练得太好,在实际的测试环境中可能会产生错误,所以适当的剪枝对数据挖掘算法来说也是很重要的。


欠拟合则是指机器学习得不充分,数据样本太少,不足以让机器形成自我认知。


2、为什么说朴素贝叶斯是“朴素”的?


朴素贝叶斯是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,是因为它假设每个输入变量是独立的。这是一个强硬的假设,实际情况并不一定,但是这项技术对于绝大部分的复杂问题仍然非常有效。


3、SVM 最重要的思想是什么?


SVM 计算的过程就是帮我们找到超平面的过程,它有个核心的概念叫:分类间隔。SVM 的目标就是找出所有分类间隔中最大的那个值对应的超平面。在数学上,这是一个凸优化问题。同样我们根据数据是否线性可分,把 SVM 分成硬间隔 SVM、软间隔 SVM 和非线性 SVM。


4、K-Means 和 KNN 算法的区别是什么?


首先,这两个算法解决的是数据挖掘中的两类问题。K-Means 是聚类算法,KNN 是分类算法。其次,这两个算法分别是两种不同的学习方式。K-Means 是非监督学习,也就是不需要事先给出分类标签,而 KNN 是有监督学习,需要我们给出训练数据的分类标识。最后,K 值的含义不同。K-Means 中的 K 值代表 K 类。KNN 中的 K 值代表 K 个最接近的邻居。

阅读全文

与数据挖掘算法面试题相关的资料

热点内容
怎么进入电脑板2b2t服务器 浏览:282
idea编译进度条 浏览:132
文件夹工具箱软件 浏览:686
最近为什么手机连不上索尼服务器 浏览:877
海康录像机怎么关视频加密 浏览:786
编程以后有可能被机器人代替吗 浏览:522
windows创建文件命令 浏览:986
linuxcopy文件内容 浏览:383
程序员帅哥秃顶 浏览:839
阿里云服务器开通流程 浏览:105
如何开云服务器 浏览:979
网站小说源码 浏览:302
php用什么ide 浏览:867
网上预约课程app哪个好 浏览:153
android兼容测试工具 浏览:97
云服务器不支持虚拟化怎么办 浏览:189
加密方式的演变 浏览:364
java常用算法pdf 浏览:735
服务器数据遇到异常什么原因 浏览:451
phpexif信息 浏览:544