导航:首页 > 源码编译 > A算法的实现步骤

A算法的实现步骤

发布时间:2024-07-13 05:57:18

⑴ 如何基于Cocos2d-x v3.x实现A星寻路算法

实现A星算法
根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法:
- 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值)
- 一个方法用来计算从一个方块到相邻方块的移动数值
- 一个方法是根据"曼哈顿距离"算法,计算方块的H值

打开CatSprite.cpp文件,添加如下方法:

void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord(const Point &fromCoord, const Point &toCoord)
{
// 这里使用曼哈顿方法,计算从当前步骤到达目标步骤,在水平和垂直方向总的步数
// 忽略了可能在路上的各种障碍
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::(const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因为不能斜着走,而且由于地形就是可行走和不可行走的成本都是一样的
// 如果能够对角移动,或者有沼泽、山丘等等,那么它必须是不同的
return 1;
}

接下来,需要一个方法去获取给定方块的所有相邻可行走方块。因为在这个游戏中,HelloWorld管理着地图,所以在那里添加方法。打开HelloWorldScene.cpp文件,添加如下方法:

PointArray *HelloWorld::(const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}

可以继续CatSprite.cpp中的moveToward方法了,在moveToward方法的后面,添加如下代码:

bool pathFound = false;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加猫的方块坐标到open列表
this->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步骤
// 因为是有序列表,第一个步骤总是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加当前步骤到closed列表
_spClosedSteps.pushBack(currentStep);
// 将它从open列表里面移除
// 需要注意的是,如果想要先从open列表里面移除,应小心对象的内存
_spOpenSteps.erase(0);
// 如果当前步骤是目标方块坐标,那么就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true;
ShortestPathStep *tmpStep = currentStep;
CCLOG("PATH FOUND :");
do
{
CCLOG("%s", tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到没有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break;
}
// 得到当前步骤的相邻方块坐标
PointArray *adjSteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 检查步骤是不是已经在closed列表
if (this->getStepIndex(_spClosedSteps, step) != -1)
{
continue;
}
// 计算从当前步骤到此步骤的成本
int moveCost = this->(currentStep, step);
// 检查此步骤是否已经在open列表
ssize_t index = this->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 设置当前步骤作为上一步操作
step->setParent(currentStep);
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是从此步骤到目标方块坐标的移动量估算值
step->setHScore(this->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this->insertInOpenSteps(step);
}
else
{
// 获取旧的步骤,其值已经计算过
step = _spOpenSteps.at(index);
// 检查G值是否低于当前步骤到此步骤的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因为G值改变了,F值也会跟着改变
// 所以为了保持open列表有序,需要将此步骤移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 现在可以放心移除,不用担心被释放
_spOpenSteps.erase(index);
// 重新按序插入
this->insertInOpenSteps(step);
// 现在可以释放它了,因为open列表应该持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
}

添加以下方法:

ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}

⑵ 排列a的算法是什么

计算方法:


(1)排列数公式


排列用符号A(n,m)表示,m≦n。


计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!


此外规定0!=1,n!表示n(n-1)(n-2)…1


例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。


(2)组合数公式


组合用符号C(n,m)表示,m≦n。


公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。


例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。

两个常用的排列基本计数原理及应用:

1、加法原理和分类计数法:

每一类中的每一种方法都可以独立地完成此任务。两类不同办法中的具体方法,互不相同(即分类不重)。完成此任务的任何一种方法,都属于某一类(即分类不漏)。

2、乘法原理和分步计数法:

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务。各步计数相互独立。只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

⑶ 计算机网络的最短路径算法有哪些对应哪些协议

用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法有:
Dijkstra算法、A*算法、SPFA算法、Bellman-Ford算法和Floyd-Warshall算法,本文主要介绍其中的三种。

最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:

确定起点的最短路径问题:即已知起始结点,求最短路径的问题。

确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。

全局最短路径问题:求图中所有的最短路径。
Floyd

求多源、无负权边的最短路。用矩阵记录图。时效性较差,时间复杂度O(V^3)。

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题。
Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2)。

Floyd-Warshall的原理是动态规划:

设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。

若最短路径经过点k,则Di,j,k = Di,k,k-1 + Dk,j,k-1;

若最短路径不经过点k,则Di,j,k = Di,j,k-1。

因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。

在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。

Floyd-Warshall算法的描述如下:

for k ← 1 to n do

for i ← 1 to n do

for j ← 1 to n do

if (Di,k + Dk,j < Di,j) then

Di,j ← Di,k + Dk,j;

其中Di,j表示由点i到点j的代价,当Di,j为 ∞ 表示两点之间没有任何连接。

Dijkstra

求单源、无负权的最短路。时效性较好,时间复杂度为O(V*V+E),可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。

当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2) 。可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
Bellman-Ford

求单源最短路,可以判断有无负权回路(若有,则不存在最短路),时效性较好,时间复杂度O(VE)。

Bellman-Ford算法是求解单源最短路径问题的一种算法。

单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。

与Dijkstra算法不同的是,在Bellman-Ford算法中,边的权值可以为负数。设想从我们可以从图中找到一个环

路(即从v出发,经过若干个点之后又回到v)且这个环路中所有边的权值之和为负。那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去。如果不处理这个负环路,程序就会永远运行下去。 而Bellman-Ford算法具有分辨这种负环路的能力。
SPFA

是Bellman-Ford的队列优化,时效性相对好,时间复杂度O(kE)。(k< 与Bellman-ford算法类似,SPFA算法采用一系列的松弛操作以得到从某一个节点出发到达图中其它所有节点的最短路径。所不同的是,SPFA算法通过维护一个队列,使得一个节点的当前最短路径被更新之后没有必要立刻去更新其他的节点,从而大大减少了重复的操作次数。
SPFA算法可以用于存在负数边权的图,这与dijkstra算法是不同的。

与Dijkstra算法与Bellman-ford算法都不同,SPFA的算法时间效率是不稳定的,即它对于不同的图所需要的时间有很大的差别。
在最好情形下,每一个节点都只入队一次,则算法实际上变为广度优先遍历,其时间复杂度仅为O(E)。另一方面,存在这样的例子,使得每一个节点都被入队(V-1)次,此时算法退化为Bellman-ford算法,其时间复杂度为O(VE)。
SPFA算法在负边权图上可以完全取代Bellman-ford算法,另外在稀疏图中也表现良好。但是在非负边权图中,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法,以及它的使用堆优化的版本。通常的SPFA。

⑷ 人工智能 A*算法原理

A 算法是启发式算法重要的一种,主要是用于在两点之间选择一个最优路径,而A 的实现也是通过一个估值函数

上图中这个熊到树叶的 曼哈顿距离 就是蓝色线所表示的距离,这其中不考虑障碍物,假如上图每一个方格长度为1,那么此时的熊的曼哈顿距离就为9.
起点(X1,Y1),终点(X2,Y2),H=|X2-X1|+|Y2-Y1|
我们也可以通过几何坐标点来算出曼哈顿距离,还是以上图为例,左下角为(0,0)点,熊的位置为(1,4),树叶的位置为(7,1),那么H=|7-1|+|1-4|=9。

还是以上图为例,比如刚开始熊位置我们会加入到CLOSE列表中,而熊四周它可以移动到的点位我们会加入到OPEN列表中,并对熊四周的8个节点进行F=G+H这样的估值运算,然后在这8个节点中选中一个F值为最小的节点,然后把再把这个节点从OPEN列表中删除,加入到Close列表中,从接着在对这个节点的四周8个节点进行一个估值运算,再接着依次运算,这样说大家可能不是太理解,我会在下边做详细解释。

从起点到终点,我们通过A星算法来找出最优路径

我们把每一个方格的长度定义为1,那从起始点到5位置的代价就是1,到3的代价为1.41,定义好了我们接着看上图,接着运算

第一步我们会把起始点四周的点加入OPEN列表中然后进行一个估值运算,运算结果如上图,这其中大家看到一个小箭头都指向了起点,这个箭头就是指向父节点,而open列表的G值都是根据这个进行计算的,意思就是我从上一个父节点运行到此处时所需要的总代价,如果指向不一样可能G值就不一样,上图中我们经过计算发现1点F值是7.41是最小的,那我们就选中这个点,并把1点从OPEN列表中删除,加入到CLOSE列表中,但是我们在往下运算的时候发现1点的四周,2点,3点和起始点这三个要怎么处理,首先起始点已经加入到了CLOSE,他就不需要再进行这种运算,这就是CLOSE列表的作用,而2点和3点我们也可以对他进行运算,2点的运算,我们从1移动到2点的时候,他需要的代价也就是G值会变成2.41,而H值是不会变的F=2.41+7=9.41,这个值我们发现大于原来的的F值,那我们就不能对他进行改变(把父节点指向1,把F值改为9.41,因为我们一直追求的是F值最小化),3点也同理。

在对1点四周进行运算后整个OPEN列表中有两个点2点和3点的F值都是7.41,此时我们系统就可能随机选择一个点然后进行下一步运算,现在我们选中的是3点,然后对3点的四周进行运算,结果是四周的OPEN点位如果把父节点指向3点值时F值都比原来的大,所以不发生改变。我们在看整个OPEN列表中,也就2点的7.41值是最小的,那我们就选中2点接着运算。

我们在上一部运算中选中的是1点,上图没有把2点加入OPEN列表,因为有障碍物的阻挡从1点他移动不到2点,所以没有把2点加入到OPEN列表中,整个OPEN列表中3的F=8是最小的,我们就选中3,我们对3点四周进行运算是我们发现4点经过计算G=1+1=2,F=2+6=8所以此时4点要进行改变,F变为8并把箭头指向3点(就是把4点的父节点变为3),如下图

我们就按照这种方法一直进行运算,最后 的运算结果如下图

而我们通过目标点位根据箭头(父节点),一步一步向前寻找最后我们发现了一条指向起点的路径,这个就是我们所需要的最优路径。 如下图的白色选中区域

但是我们还要注意几点

最优路径有2个

这是我对A*算法的一些理解,有些地方可能有BUG,欢迎大家指出,共同学习。

⑸ A*算法介绍

姓名:车文扬 学号:16020199006

【嵌牛导读】:A*算法的逐步详解

【嵌牛鼻子】:启发式算法

【嵌牛提问】:A*算法的原理是什么?

【嵌牛正文】:

A*算法

路径规划是指的是机器人的最优路径规划问题,即依据某个或某些优化准则(如工作代价最小、行走路径最短、行走时间最短等),在工作空间中找到一个从起始状态到目标状态能避开障碍物的最优路径。机器人的路径规划应用场景极丰富,最常见如游戏中NPC及控制角色的位置移动,网络地图等导航问题,小到家庭扫地机器人、无人机大到各公司正争相开拓的无人驾驶汽车等。

目前路径规划算法分为:

A*算法原理:

在计算机科学中,A*算法作为Dijkstra算法的扩展,因其高效性而被广泛应用于寻路及图的遍历,如星际争霸等游戏中就大量使用。在理解算法前,我们需要知道几个概念:

搜索区域(The Search Area):图中的搜索区域被划分为了简单的二维数组,数组每个元素对应一个小方格,当然我们也可以将区域等分成是五角星,矩形等,通常将一个单位的中心点称之为搜索区域节点(Node)。

开放列表(Open List):我们将路径规划过程中待检测的节点存放于Open List中,而已检测过的格子则存放于Close List中。

父节点(parent):在路径规划中用于回溯的节点,开发时可考虑为双向链表结构中的父结点指针。

路径排序(Path Sorting):具体往哪个节点移动由以下公式确定:F(n) = G + H 。G代表的是从初始位置A沿着已生成的路径到指定待检测格子的移动开销。H指定待测格子到目标节点B的估计移动开销。

启发函数(Heuristics Function):H为启发函数,也被认为是一种试探,由于在找到唯一路径前,我们不确定在前面会出现什么障碍物,因此用了一种计算H的算法,具体根据实际场景决定。在我们简化的模型中,H采用的是传统的曼哈顿距离(Manhattan Distance),也就是横纵向走的距离之和。

如下图所示,绿色方块为机器人起始位置A,红色方块为目标位置B,蓝色为障碍物。

我们把要搜寻的区域划分成了正方形的格子。这是寻路的第一步,简化搜索区域。这个特殊的方法把我们的搜索区域简化为了2 维数组。数组的每一项代表一个格子,它的状态就是可走(walkalbe)或不可走(unwalkable) 。现用A*算法寻找出一条自A到B的最短路径,每个方格的边长为10,即垂直水平方向移动开销为10。因此沿对角移动开销约等于14。具体步骤如下:

从起点 A 开始,把它加入到一个由方格组成的open list(开放列表) 中,这个open list像是一个购物清单。Open list里的格子是可能会是沿途经过的,也有可能不经过。因此可以将其看成一个待检查的列表。查看与A相邻的8个方格 ,把其中可走的 (walkable) 或可到达的(reachable) 方格加入到open list中。并把起点 A 设置为这些方格的父节点 (parent node) 。然后把 A 从open list中移除,加入到close list(封闭列表) 中,close list中的每个方格都是不需要再关注的。

如下图所示,深绿色的方格为起点A,它的外框是亮蓝色,表示该方格被加入到了close list 。与它相邻的黑色方格是需要被检查的,他们的外框是亮绿色。每个黑方格都有一个灰色的指针指向他们的父节点A。

下一步,我们需要从open list中选一个与起点A相邻的方格。但是到底选择哪个方格好呢?选F值最小的那个。我们看看下图中的一些方格。在标有字母的方格中G = 10 。这是因为水平方向从起点到那里只有一个方格的距离。与起点直接相邻的上方,下方,左方的方格的G 值都是10 ,对角线的方格G 值都是14 。H值通过估算起点到终点( 红色方格) 的Manhattan 距离得到,仅作横向和纵向移动,并且忽略沿途的障碍。使用这种方式,起点右边的方格到终点有3 个方格的距离,因此H = 30 。这个方格上方的方格到终点有4 个方格的距离( 注意只计算横向和纵向距离) ,因此H = 40 。

比较open list中节点的F值后,发现起点A右侧节点的F=40,值最小。选作当前处理节点,并将这个点从Open List删除,移到Close List中。

对这个节点周围的8个格子进行判断,若是不可通过(比如墙,水,或是其他非法地形)或已经在Close List中,则忽略。否则执行以下步骤:

若当前处理节点的相邻格子已经在Open List中,则检查这条路径是否更优,即计算经由当前处理节点到达那个方格是否具有更小的 G值。如果没有,不做任何操作。相反,如果G值更小,则把那个方格的父节点设为当前处理节点 ( 我们选中的方格 ) ,然后重新计算那个方格的 F 值和 G 值。

若当前处理节点的相邻格子不在Open List中,那么把它加入,并将它的父节点设置为该节点。

按照上述规则我们继续搜索,选择起点右边的方格作为当前处理节点。它的外框用蓝线打亮,被放入了close list 中。然后我们检查与它相邻的方格。它右侧的3个方格是墙壁,我们忽略。它左边的方格是起点,在close list 中,我们也忽略。其他4个相邻的方格均在open list 中,我们需要检查经由当前节点到达那里的路径是否更好。我们看看上面的方格,它现在的G值为14 ,如果经由当前方格到达那里,G值将会为20( 其中10为从起点到达当前方格的G值,此外还要加上从当前方格纵向移动到上面方格的G值10) ,因此这不是最优的路径。看图就会明白直接从起点沿对角线移动到那个方格比先横向移动再纵向移动要好。

当把4个已经在open list 中的相邻方格都检查后,没有发现经由当前节点的更好路径,因此不做任何改变。接下来要选择下一个待处理的节点。因此再次遍历open list ,现在open list中只有7 个方格了,我们需要选择F值最小的那个。这次有两个方格的F值都是54,选哪个呢?没什么关系。从速度上考虑,选择最后加入open list 的方格更快。因此选择起点右下方的方格,如下图所示。

接下来把起点右下角F值为54的方格作为当前处理节点,检查其相邻的方格。我们发现它右边是墙(墙下面的一格也忽略掉,假定墙角不能直接穿越),忽略之。这样还剩下 5 个相邻的方格。当前方格下面的 2 个方格还没有加入 open list ,所以把它们加入,同时把当前方格设为他们的父亲。在剩下的 3 个方格中,有 2 个已经在 close list 中 ( 一个是起点,一个是当前方格上面的方格,外框被加亮的 ) ,我们忽略它们。最后一个方格,也就是当前方格左边的方格,检查经由当前方格到达那里是否具有更小的 G 值。没有,因此我们准备从 open list 中选择下一个待处理的方格。

不断重复这个过程,直到把终点也加入到了open list 中,此时如下图所示。注意在起点下方2 格处的方格的父亲已经与前面不同了。之前它的G值是28并且指向它右上方的方格。现在它的G 值为20 ,并且指向它正上方的方格。这是由于在寻路过程中的某处使用新路径时G值更小,因此父节点被重新设置,G和F值被重新计算。

那么我们怎样得到实际路径呢?很简单,如下图所示,从终点开始,沿着箭头向父节点移动,直至回到起点,这就是你的路径。

A*算法总结:

1. 把起点加入 open list 。

2. 重复如下过程:

a. 遍历open list ,查找F值最小的节点,把它作为当前要处理的节点,然后移到close list中

b. 对当前方格的 8 个相邻方格一一进行检查,如果它是不可抵达的或者它在close list中,忽略它。否则,做如下操作:

□  如果它不在open list中,把它加入open list,并且把当前方格设置为它的父亲

□  如果它已经在open list中,检查这条路径 ( 即经由当前方格到达它那里 ) 是否更近。如果更近,把它的父亲设置为当前方格,并重新计算它的G和F值。如果你的open list是按F值排序的话,改变后你可能需要重新排序。

c. 遇到下面情况停止搜索:

□  把终点加入到了 open list 中,此时路径已经找到了,或者

□  查找终点失败,并且open list 是空的,此时没有路径。

3. 从终点开始,每个方格沿着父节点移动直至起点,形成路径。

⑹ A*算法java实现

首先,你要知道走迷宫的思路:就是遇到岔路都往一个方向,比如往右,遇到死路就回头,回头遇到岔路继续往右。
线法线在同一平面上,反射光线与入射光线分

阅读全文

与A算法的实现步骤相关的资料

热点内容
phpexif信息 浏览:540
单片机三字节浮点数 浏览:754
命令与征服泰伯利亚战争下载 浏览:376
c窗口界面编程 浏览:21
hypermill编程能做模板吗 浏览:780
计算机网络最经典的算法 浏览:626
华为思科的配置命令 浏览:869
linux设置光盘启动 浏览:359
程序员俱乐部注册 浏览:17
洗洁精鸡蛋盘解压视频 浏览:291
企业内网加密app 浏览:49
腾讯云服务器怎么设置本地网络 浏览:623
日常程序员 浏览:513
哪个pe有bit加密功能 浏览:108
rust服务器是用什么ip 浏览:692
java随机字符串生成 浏览:551
数码宝贝编程人物 浏览:390
php多用户建站系统 浏览:624
加密防盗地上栓价位 浏览:671
比泽尔压缩机下载 浏览:421