导航:首页 > 源码编译 > 简单的文本编译器算法

简单的文本编译器算法

发布时间:2024-07-27 02:24:03

算法与程序的区别与联系

算法和程序的区别是:

(1) 两者定义不同。算法是对特定问题求解步骤的描述,它是有限序列指令。而程序是实现预期目的而进行操作的一系列语句和指令。

说通俗一些算法是解决一个问题的思路,程序,是解决这些问题所具体好写的代码。算法没有语言界限。他只是一个思路。为实现相同的一个算法,用不同语言编写的程序会不一样。

(2)两者的书写规定不同。程序必须用规定的程序设计语言来写,而算法很随意。算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。算法常常含有重复的步骤和一些逻辑判断。

简单算法举例 例:求 1*2*3*4*5

步骤 1 :先求 1*2 ,得到结果 2 。

步骤 2 :将步骤 1 得到的乘积 2 再乘以 3 ,得到结果 6 。

步骤 3 :将步骤 2 得到的乘积 6 再乘以 4 ,得到结果 24 。

步骤 4 :将步骤 3 得到的乘积 24 再乘以 5 ,得到最后结果 120 。

算法与程序的联系 :

算法和程序都是指令的有限序列 ,但是程序是算法,而算法不一定是 程序。程序 = 数据结构 + 算法。算法的主要目的在于为人们提供阅读了解所执行的工作流程与步骤。数据结构与算法要通过程序的实现,才能由计算机系统来执行。可以这样理解,数据结构和算法形成了可执行的程序。

(1)简单的文本编译器算法扩展阅读

算法的要素:

一、数据对象的运算和操作:计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:

1、算术运算:加减乘除等运算。

2、逻辑运算:或、且、非等运算。

3、关系运算:大于、小于、等于、不等于等运算。

4、数据传输:输入、输出、赋值等运算。

二、算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。

❷ 什么是编译原理

编译原理是计算机专业的一门重要专业课,旨在介绍编译程序构造的一般原理和基本方法。内容包括语言和文法、词法分析、语法分析、语法制导翻译、中间代码生成、存储管理、代码优化和目标代码生成。 编译原理是计算机专业设置的一门重要的专业课程。虽然只有少数人从事编译方面的工作,但是这门课在理论、技术、方法上都对学生提供了系统而有效的训练,有利于提高软件人员的素质和能力。
这门课程关注的是编译器方面的产生原理和技术问题,似乎和计算机的基础领域不沾边,可是编译原理却一直作为大学本科的 必修课程,同时也成为了研究生入学考试的必考内容。编译原理及技术从本质上来讲就是一个算法问题而已,当然由于这个问题十分复杂,其解决算法也相对复杂。 我们学的数据结构与算法分析也是讲算法的,不过讲的基础算法,换句话说讲的是算法导论,而编译原理这门课程讲的就是比较专注解决一种的算法了。在20世纪 50年代,编译器的编写一直被认为是十分困难的事情,第一Fortran的编译器据说花了18年的时间才完成。在人们尝试编写编译器的同时,诞生了许多跟 编译相关的理论和技术,而这些理论和技术比一个实际的编译器本身价值更大。就犹如数学家们在解决着名的哥德巴赫猜想一样,虽然没有最终解决问题,但是其间 诞生不少名着的相关数论。

❸ 新版编译器OnCalculate我这样编写,理解,对吗

OnCalculate

OnCalculate()函数只在自定义指标中调用,通过Calculate计算指标值是必须的。通常在接到指标计算的交易品种新订单号时发生。这个指标不需要附在交易品种的价格图表上。

OnCalculate() 函数有个返回值int。有两个可能定义。一个指标中不可以有两个函数版本。

一种是用于单数据缓冲中计算的指标。例如,自定义移动平均数指标。

int OnCalculate (const int rates_total, // 价格[] 数组的大小
const int prev_calculated, // 前一次调用处理的柱
const int begin, // 有效数据起始位置
const double& price[] // 计算的数组
);
价格[]数组中,可以传送时间序列和计算的一些指标缓冲。ArrayGetAsSeries()函数确定价格[] 数组索引方向。为了不依赖默认值,需要无条件的调用ArraySetAsSeries()函数用于工作的数组。

价格[]数组中,在“参数”标签启动指标时,选择适当的时间序列或者指标。所以,需要在“应用于”字段的下拉列表中指定必要的项目。

Selecting timeseries to calculate an indicator

从其他mql5程序中接收自定义指标值,要使用iCustom()函数,返回嵌入指标处理程序。可以指定适当的价格[]数组或者另一个指标处理程序。这个参数在自定义指标输入变量列表中最后传送。
示例:

void OnStart()
{
//---
string terminal_path=TerminalInfoString(STATUS_TERMINAL_PATH);
int handle_customMA=iCustom(Symbol(),PERIOD_CURRENT, "Custom Moving Average",13,0, MODE_EMA,PRICE_TYPICAL);
if(handle_customMA>0)
Print("handle_customMA = ",handle_customMA);
else
Print("Cannot open or not EX5 file '"+terminal_path+"\\MQL5\\Indicators\\"+"Custom Moving Average.ex5'");
}
这个示例中,通过的最后参数是PRICE_TYPICAL值(从ENUM_APPLIED_PRICE计数开始),指出自定义指标可以用获得的典型价格建立(高价+低价+平仓)/3。如果没有确定这个参数,指标基于PRICE_CLOSE 值建立,例如每栏平仓价。

另一个示例显示依照指定价格[]数组的最后一个参数传送指标处理程序,由函数iCustom()所描述。

另一种形式意在所有其他指标,计算更多的时间序列。

int OnCalculate (const int rates_total, // 输入时间序列大小
const int prev_calculated, // 前一次调用处理的柱
const datetime& time[], // 时间
const double& open[], // 开盘价
const double& high[], // 最高价
const double& low[], // 最低价
const double& close[], // 收盘价
const long& tick_volume[], // 订单交易量
const long& volume[], // 真实交易量
const int& spread[] // 点差
);
开盘价[],最高价[],最低价[]和收盘价[]参数由当前时间表的开盘价,最高和最低价和收盘价数组组成。时间参数[]包括开盘时间值数组,扩展参数[]有一个数组包括扩展历史记录(如果为交易安全提供扩展)。volume[] 和tick_volume[] 参数分别包括交易和交易量历史记录。

确定时间[]索引方向, 开盘价[], 最高价[], 最低价[], 收盘价[], 交易量[], 交易量[] 和 扩展[],需要调用ArrayGetAsSeries()函数。若不想依赖默认值,需要无条件的调用函数ArraySetAsSeries()用于工作的数组。

首先rates_total 参数包括栏的数量,可用来计算指标,与图表中现存的栏数一致。

需要注意OnCalculate() 返回值和第二输入参数prev_calculated的连接。调用函数时,prev_calculated 参数包括上次调用时OnCalculate() 返回值。这就允许用经济算法计算自定义指标,避免重复计算。

返回rates_total参数值足够了,包括当前调用函数的栏数。如果自从上次调用函数OnCalculate(),价格数据更改了(下载深度历史记录或者填满历史空白期),输入参数prev_calculated 值由终端机设置为零。

注:如果OnCalculate返回零,那么指标值不能显示在客户端的数据窗口。

为更好的理解,启动附加以下代码的指标很有用。

指标示例:
#property indicator_chart_window
#property indicator_buffers 1
#property indicator_plots 1
//---- 图的线
#property indicator_label1 "Line"
#property indicator_type1 DRAW_LINE
#property indicator_color1 clrDarkBlue
#property indicator_style1 STYLE_SOLID
#property indicator_width1 1
//--- 指标缓冲区
double LineBuffer[];
//+------------------------------------------------------------------+
//| 自定义指标初始化函数 |
//+------------------------------------------------------------------+
int OnInit()
{
//--- 指标缓冲区绘图
SetIndexBuffer(0,LineBuffer,INDICATOR_DATA);
//---
return(INIT_SUCCEEDED);
}
//+------------------------------------------------------------------+
//| 自定义指标重复函数 |
//+------------------------------------------------------------------+
int OnCalculate(const int rates_total,
const int prev_calculated,
const datetime& time[],
const double& open[],
const double& high[],
const double& low[],
const double& close[],
const long& tick_volume[],
const long& volume[],
const int& spread[])
{
//--- 获得当前交易品种和图表周期的有效柱数
int bars=Bars(Symbol(),0);
Print("Bars = ",bars,", rates_total = ",rates_total,", prev_calculated = ",prev_calculated);
Print("time[0] = ",time[0]," time[rates_total-1] = ",time[rates_total-1]);
//--- 为下次调用返回prev_calculated值
return(rates_total);
}
//+------------------------------------------------------------------+

❹ 编译器中都有哪些算法

词法/语法分析、程序分析与程序变换、代码生成、内存管理、虚拟机、函数式语言的实现与优化。。。每个话题都能出不止一本书。

用到的算法/数据结构多如牛毛:

各种树、图为主,其他如栈、队列、散列表、并查集。。。

贪心、回溯、动态规划、遗传算法、矩阵变换。。

在一个问题下很难回答好。。 先简单介绍一下和图相关的。

1. 和什么图打交道
CFG(Control Flow Graph)
控制流图是对程序中分支跳转关系的抽象,描述程序所有可能执行路径

节点是语句集合(basic block);

每个basic block有唯一入口和出口;

如果A到B有边,表示A执行完后可能执行B

PDG(Program Dependence Graph)
PDG在编译器中用得不多,常见于软件工程/安全相关的应用(程序切片、安全信息流等)

SSA(Single Static Assignment)
SSA简化了很多数据流分析问题。

其他图
DJ Graph, Loop Nesting Forest, Program Structure Tree等等。

可参考:IR for Program Analysis。下面主要介绍CFG

2. CFG初步处理
CFG构造

dominator树生成
在CFG中,如果A是B的dominator,则从程序入口执行到B的任意路径一定经过A

控制依赖分析
根据dominator和post-dominator分析依赖关系。数据依赖、控制依赖信息在自动并行化中尤其重要(如果循环的每次迭代都没有依赖,那么可以并行处理)

控制流图化简
在复杂度相同的情况下,CFG的规模影响算法的效果。如果一个CFG仅通过如下变换能化简为一个节点,则它是可化简的:

如果节点n有唯一的前驱,那么将其和其前驱合并为一个节点

如果节点存在到自身的边,那么将该边删除
构造SSA
SSA可以由CFG构造。

3. CFG与数据流分析
下面才进入主题。。
一般的文献介绍DFA(Data flow analysis),都会用几个基础的分析为例:Constant Propagation,Range propagation,Avaliable expressions,Reaching Definition。而Reaching Definition的一个应用,就是大家喜闻乐见的“跳转到定义处”(真要做到“智能”跳转并不简单)

这部分涉及东西较多,一些算法也和”图“并不直接相关,不再展开。

PS,很多DFA问题可以用graph reachability统一建模,强烈推荐此文:
Program analysis via graph reachability

❺ MD5是如何编译的

MD5简介

MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经MD2、MD3和MD4发展而来。

Message-Digest泛指字节串(Message)的Hash变换,就是把一个任意长度的字节串变换成一定长的大整数。请注意我使用了“字节串”而不是“字符串”这个词,是因为这种变换只与字节的值有关,与字符集或编码方式无关。

MD5将任意长度的“字节串”变换成一个128bit的大整数,并且它是一个不可逆的字符串变换算法,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。

MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。

MD5还广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,而系统并不“知道”用户的密码是什么。

一些黑客破获这种密码的方法是一种被称为“跑字典”的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。

即使假设密码的最大长度为8,同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘组,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。

在很多电子商务和社区应用中,管理用户的Account是一种最常用的基本功能,尽管很多Application Server提供了这些基本组件,但很多应用开发者为了管理的更大的灵活性还是喜欢采用关系数据库来管理用户,懒惰的做法是用户的密码往往使用明文或简单的变换后直接保存在数据库中,因此这些用户的密码对软件开发者或系统管理员来说可以说毫无保密可言,本文的目的是介绍MD5的java Bean的实现,同时给出用MD5来处理用户的Account密码的例子,这种方法使得管理员和程序设计者都无法看到用户的密码,尽管他们可以初始化它们。但重要的一点是对于用户密码设置习惯的保护。

有兴趣的读者可以从这里取得MD5也就是RFC 1321的文本。 http://www.ietf.org/rfc/rfc1321.txt

实现策略

MD5的算法在RFC1321中实际上已经提供了C的实现,我们其实马上就能想到,至少有两种用Java实现它的方法,第一种是,用Java语言重新写整个算法,或者再说简单点就是把C程序改写成Java程序。第二种是,用JNI(Java Native Interface)来实现,核心算法仍然用这个C程序,用Java类给它包个壳。

但我个人认为,JNI应该是Java为了解决某类问题时的没有办法的办法(比如与操作系统或I/O设备密切相关的应用),同时为了提供和其它语言的互操作性的一个手段。使用JNI带来的最大问题是引入了平台的依赖性,打破了SUN所鼓吹的“一次编写到处运行”的Java好处。因此,我决定采取第一种方法,一来和大家一起尝试一下“一次编写到处运行”的好处,二来检验一下Java 2现在对于比较密集的计算的效率问题。

实现过程

限于这篇文章的篇幅,同时也为了更多的读者能够真正专注于问题本身,我不想就某一种Java集成开发环境来介绍这个Java Bean的制作过程,介绍一个方法时我发现步骤和命令很清晰,我相信有任何一种Java集成环境三天以上经验的读者都会知道如何把这些代码在集成环境中编译和运行。用集成环境讲述问题往往需要配很多屏幕截图,这也是我一直对集成环境很头疼的原因。我使用了一个普通的文本编辑器,同时使用了Sun公司标准的JDK 1.3.0 for Windows NT。

其实把C转换成Java对于一个有一定C语言基础的程序员并不困难,这两个语言的基本语法几乎完全一致.我大概花了一个小时的时间完成了代码的转换工作,我主要作了下面几件事:

把必须使用的一些#define的宏定义变成Class中的final static,这样保证在一个进程空间中的多个Instance共享这些数据
删去了一些无用的#if define,因为我只关心MD5,这个推荐的C实现同时实现了MD2 MD3和 MD4,而且有些#if define还和C不同编译器有关
将一些计算宏转换成final static 成员函数。
所有的变量命名与原来C实现中保持一致,在大小写上作一些符合Java习惯的变化,计算过程中的C函数变成了private方法(成员函数)。
关键变量的位长调整
定义了类和方法
需要注意的是,很多早期的C编译器的int类型是16 bit的,MD5使用了unsigned long int,并认为它是32bit的无符号整数。而在Java中int是32 bit的,long是64 bit的。在MD5的C实现中,使用了大量的位操作。这里需要指出的一点是,尽管Java提供了位操作,由于Java没有unsigned类型,对于右移位操作多提供了一个无符号右移:>>>,等价于C中的 >> 对于unsigned 数的处理。

因为Java不提供无符号数的运算,两个大int数相加就会溢出得到一个负数或异常,因此我将一些关键变量在Java中改成了long类型(64bit)。我个人认为这比自己去重新定义一组无符号数的类同时重载那些运算符要方便,同时效率高很多并且代码也易读,OO(Object Oriented)的滥用反而会导致效率低下。

限于篇幅,这里不再给出原始的C代码,有兴趣对照的读者朋友可以去看RFC 1321。MD5.java源代码

测试

在RFC 1321中,给出了Test suite用来检验你的实现是否正确:

MD5 ("") =

MD5 ("a") =

MD5 ("abc") =

MD5 ("message digest") =

MD5 ("abcdefghijklmnopqrstuvwxyz") =

……

这些输出结果的含义是指:空字符串””的MD5值是,字符串”a”的MD5值是……
编译并运行我们的程序:
javac –d . MD5.java
java beartool.MD5
为了将来不与别人的同名程序冲突,我在我的程序的第一行使用了package beartool;

因此编译命令javac –d . MD5.java 命令在我们的工作目录下自动建立了一个beartool目录,目录下放着编译成功的 MD5.class

我们将得到和Test suite同样的结果。当然还可以继续测试你感兴趣的其它MD5变换,例如:

java beartool.MD5 1234

将给出1234的MD5值。

可能是我的计算机知识是从Apple II和Z80单板机开始的,我对大写十六进制代码有偏好,如果您想使用小写的Digest String只需要把byteHEX函数中的A、B、C、D、E、F改成a、b、 c、d、e、f就可以了。

MD5据称是一种比较耗时的计算,我们的Java版MD5一闪就算出来了,没遇到什么障碍,而且用肉眼感觉不出来Java版的MD5比C版的慢。

为了测试它的兼容性,我把这个MD5.class文件拷贝到我的另一台linux+IBM JDK 1.3的机器上,执行后得到同样结果,确实是“一次编写到处运行了”。

Java Bean简述

现在,我们已经完成并简单测试了这个Java Class,我们文章的标题是做一个Java Bean。

其实普通的Java Bean很简单,并不是什么全新的或伟大的概念,就是一个Java的Class,尽管 Sun规定了一些需要实现的方法,但并不是强制的。而EJB(Enterprise Java Bean)无非规定了一些必须实现(非常类似于响应事件)的方法,这些方法是供EJB Container使用(调用)的。

在一个Java Application或Applet里使用这个bean非常简单,最简单的方法是你要使用这个类的源码工作目录下建一个beartool目录,把这个class文件拷贝进去,然后在你的程序中import beartool.MD5就可以了。最后打包成.jar或.war是保持这个相对的目录关系就行了。

Java还有一个小小的好处是你并不需要摘除我们的MD5类中那个main方法,它已经是一个可以工作的Java Bean了。Java有一个非常大的优点是她允许很方便地让多种运行形式在同一组代码中共存,比如,你可以写一个类,它即是一个控制台Application和GUI Application,同时又是一个Applet,同时还是一个Java Bean,这对于测试、维护和发布程序提供了极大的方便,这里的测试方法main还可以放到一个内部类中,有兴趣的读者可以参考: http://www.cn.ibm.com/developerWorks/java/jw-tips/tip106/index.shtml

这里讲述了把测试和示例代码放在一个内部静态类的好处,是一种不错的工程化技巧和途径。

把Java Bean装到JSP里

正如我们在本文开头讲述的那样,我们对这个MD5 Bean的应用是基于一个用户管理,这里我们假设了一个虚拟社区的用户login过程,用户的信息保存在数据库的个名为users的表中。这个表有两个字段和我们的这个例子有关,userid :char(20)和pwdmd5 :char(32),userid是这个表的Primary Key,pwdmd5保存密码的MD5串,MD5值是一个128bit的大整数,表示成16进制的ASCII需要32个字符。

这里给出两个文件,login.html是用来接受用户输入的form,login.jsp用来模拟使用MD5 Bean的login过程。

为了使我们的测试环境简单起见,我们在JSP中使用了JDK内置的JDBC-ODBC Bridge Driver,community是ODBC的DSN的名字,如果你使用其它的JDBC Driver,替换掉login.jsp中的
Connection con= DriverManager.getConnection("jdbc:odbc:community", "", "");
即可。

login.jsp的工作原理很简单,通过post接收用户输入的UserID和Password,然后将Password变换成MD5串,然后在users表中寻找UserID和pwdmd5,因为UserID是users表的Primary Key,如果变换后的pwdmd5与表中的记录不符,那么SQL查询会得到一个空的结果集。

这里需要简单介绍的是,使用这个Bean只需要在你的JSP应用程序的WEB-INF/classes下建立一个beartool目录,然后将MD5.class拷贝到那个目录下就可以了。如果你使用一些集成开发环境,请参考它们的deploy工具的说明。在JSP使用一个java Bean关键的一句声明是程序中的第2行:

<jsp:useBean id='oMD5' scope='request' class='beartool.MD5'/>
这是所有JSP规范要求JSP容器开发者必须提供的标准Tag。

id=实际上是指示JSP Container创建Bean的实例时用的实例变量名。在后面的<%和%>之间的Java程序中,你可以引用它。在程序中可以看到,通过 pwdmd5=oMD5.getMD5ofStr (password)引用了我们的MD5 Java Bean提供的唯一一个公共方法: getMD5ofStr。

Java Application Server执行.JSP的过程是先把它预编译成.java(那些Tag在预编译时会成为java语句),然后再编译成.class。这些都是系统自动完成和维护的,那个.class也称为Servlet。当然,如果你愿意,你也可以帮助Java Application Server去干本该它干的事情,自己直接去写Servlet,但用Servlet去输出HTML那简直是回到了用C写CGI程序的恶梦时代。

如果你的输出是一个复杂的表格,比较方便的方法我想还是用一个你所熟悉的HTML编辑器编写一个“模板”,然后在把JSP代码“嵌入”进去。尽管这种JSP代码被有些专家指责为“空心粉”,它的确有个缺点是代码比较难管理和重复使用,但是程序设计永远需要的就是这样的权衡。我个人认为,对于中、小型项目,比较理想的结构是把数据表示(或不严格地称作WEB界面相关)的部分用JSP写,和界面不相关的放在Bean里面,一般情况下是不需要直接写Servlet的。

如果你觉得这种方法不是非常的OO(Object Oriented),你可以继承(extends)它一把,再写一个bean把用户管理的功能包进去。

到底能不能兼容?

我测试了三种Java应用服务器环境,Resin 1.2.3、Sun J2EE 1.2、IBM WebSphere 3.5,所幸的是这个Java Bean都没有任何问题,原因其实是因为它仅仅是个计算程序,不涉及操作系统,I/O设备。其实用其它语言也能简单地实现它的兼容性的,Java的唯一优点是,你只需提供一个形态的运行码就可以了。请注意“形态”二字,现在很多计算结构和操作系统除了语言本身之外都定义了大量的代码形态,很简单的一段C语言核心代码,转换成不同形态要考虑很多问题,使用很多工具,同时受很多限制,有时候学习一种新的“形态”所花费的精力可能比解决问题本身还多。比如光Windows就有EXE、Service、的普通DLL、COM DLL以前还有OCX等等等等,在Unix上虽说要简单一些,但要也要提供一个.h定义一大堆宏,还要考虑不同平台编译器版本的位长度问题。我想这是Java对我来说的一个非常重要的魅力吧。

MD5算法说明

一、补位
二、补数据长度
三、初始化MD5参数
四、处理位操作函数
五、主要变换过程
六、输出结果

补位:
MD5算法先对输入的数据进行补位,使得数据位长度LEN对512求余的结果是448。即数据扩展至K*512+448位。即K*64+56个字节,K为整数。
具体补位操作:补一个1,然后补0至满足上述要求。
补数据长度:
用一个64位的数字表示数据的原始长度B,把B用两个32位数表示。这时,数
据就被填补成长度为512位的倍数。
初始化MD5参数:
四个32位整数 (A,B,C,D) 用来计算信息摘要,初始化使用的是十六进制表
示的数字
A=0X01234567
B=0X89abcdef
C=0Xfedcba98
D=0X76543210

处理位操作函数:
X,Y,Z为32位整数。
F(X,Y,Z) = X&Y|NOT(X)&Z
G(X,Y,Z) = X&Z|Y?(Z)
H(X,Y,Z) = X xor Y xor Z
I(X,Y,Z) = Y xor (X|not(Z))

主要变换过程:
使用常数组T[1 ... 64], T[i]为32位整数用16进制表示,数据用16个32位
的整数数组M[]表示。
具体过程如下:

/* 处理数据原文 */
For i = 0 to N/16-1 do

/*每一次,把数据原文存放在16个元素的数组X中. */
For j = 0 to 15 do
Set X[j] to M[i*16+j].
end /结束对J的循环

/* Save A as AA, B as BB, C as CC, and D as DD.
*/
AA = A
BB = B
CC = C
DD = D

/* 第1轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3
22 4]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7
22 8]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA
11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15]
[BCDA 15 22 16]

/* 第2轮* */
/* 以 [abcd k s i]表示如下操作
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA
0 20 20]
[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23]
[BCDA 4 20 24]
[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA
8 20 28]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA
12 20 32]

/* 第3轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35]
[BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA
10 23 40]
[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43]
[BCDA 6 23 44]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47]
[BCDA 2 23 48]

/* 第4轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51]
[BCDA 5 21 52]
[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55]
[BCDA 1 21 56]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59]
[BCDA 13 21 60]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63]
[BCDA 9 21 64]

/* 然后进行如下操作 */
A = A + AA
B = B + BB
C = C + CC
D = D + DD

end /* 结束对I的循环*/

输出结果。

❻ 如何更好的掌握编译器的设计与实现

1. 阅读相关书籍:编译原理、编译器设计、编译器实现等;
2. 自学相关编程语言:C、C++、Java等;
3. 实践:可以使用开源的编译器框架,例如ANTLR,搭建自己的编译器;
4. 了解编译器的各个组成部分,并学习它们的工作原理;
5. 阅读技术文章,了解编译器的设计和实现的最新进展;
6. 加入开源项目,编写和维护编译器;
7. 在论坛上交流,和更多的编译器开发者分享心得体会;
8. 参加学术会议,接触到最新的研究成果;
9. 尝试着自己设计一个编译器,用实践来加深理解。

❼ 编译原理的数据结构

编译原理一直是计算机学习的必修课.
当然,由编译器的阶段使用的算法与支持这些阶段的数据结构之间的交互是非常强大的。编译器的编写者尽可能有效实施这些方法且不引起复杂性。理想的情况是:与程序大小成线性比例的时间内编译器,换言之就是,在0 ( n )时间内,n是程序大小的度量(通常是字符数)。本节将讲述一些主要的数据结构,它们是其操作部分阶段所需要的,并用来在阶段中交流信息。 临时文件(temporary file):计算机过去一直未能在编译器时将整个程序保留在存储器中。这一问题已经通过使用临时文件来保存翻译时中间步骤的结果或通过“匆忙地”编译(也就是只保留源程序早期部分的足够信息用以处理翻译)解决了。存储器的限制现在也只是一个小问题了,现在可以将整个编译单元放在存储器之中,特别是在可以分别编译的语言中时。但是偶尔还是会发现需要在某些运行步骤中生成中间文件。其中典型的是代码生成时需要反填(backpatch)地址。例如,当翻译如下的条件语句时 if x = 0 then ... else ... 在知道else部分代码的位置之前必须由文本跳到else部分:
CMP X,0 JNE NEXT ;;
location of NEXT not yet known < code for then-part > NEXT : < code for else-part >
通常,必须为NEXT的值留出一个空格,一旦知道该值后就会将该空格填上,利用临时文件可以很容易地做到这一点。
如果想利用上面的编译原理开发一套属于自己的编程语言,或者想在一个产品中嵌入编程语言,可以参考zengl开源网开发的zengl编程语言,该编程语言为国人使用C语言开发,里面包含两个部分,一个是编译器,一个是解释执行中间代码的虚拟机。编译器包含了词法扫描,语法分析,中间代码输出等,虚拟机则类似JAVA一样解释执行中间代码。作者将所有的版本都公布出来,好让读者可以由浅入深的做研究,并且为了证明该编程语言的实用性,还结合SDL游戏开发库开发了一款图形界面和命令行界面的21点扑克小游戏 。
zengl编程语言目前适用平台为windows和linux (最开始在Linux下使用gcc开发,后来移植到windows平台)

阅读全文

与简单的文本编译器算法相关的资料

热点内容
安卓路由表怎么看 浏览:74
10个小孩分糖果python 浏览:823
安卓app小红点怎么取消 浏览:286
马哥linux面授 浏览:768
2345程序员 浏览:371
怎么开启网速显示安卓 浏览:204
索尼950app怎么样 浏览:391
计算机毕设论文源码 浏览:148
小米手机怎么下载易媒体App 浏览:191
还原系统设计可以怎样清理文件夹 浏览:670
北京时间校准服务器云服务器 浏览:844
pythonexcel数据计算 浏览:49
内医附院党建APP怎么下载 浏览:356
荣耀v20刷加密门禁卡 浏览:329
app缓冲视频怎么保存在手机 浏览:433
广度优先算法c语言 浏览:680
提高程序员竞争力 浏览:108
nfc可以开加密门卡吗 浏览:675
如何知道网页使用的服务器是什么 浏览:224
单片机接反电源会烧吗 浏览:287