Ⅰ 通达信量化选股公式
通达信的选股公式为xg:v>ref(v,1)*2 and c>ref(c,1)。公式的定义为今天的量大于等于昨天量的2倍,股价上涨。此公式的使用说明有以下几点:1、五行量化指标(浅灰色实心空心方格):实心代表趋势走好,空心代表趋势走坏;2、操盘动力线指标(黄金线):短线灵敏指标,低位拐头向上可跟进,高位拐头向下要警惕,附有高低位买卖提示;3、海洋状态指标(彩带):彩带颜色代表短中期多空趋势,低位转红可跟进,高位变色宜减仓、清仓。
量化选股的方法
1、多因素模型(Multiple-factor regression)
多因素模型将那些引起证券价格联动的因素直接加入到收益率公式之中,然后开发基于这些因素的模型,简化投资组合分析所要求的关于证券之间相关系数的输入。模型效果的好坏主要取决于因素的选取,即那些被选定的因素是否足以证明,证券收益率之间联动效应的根源在于那些因素对各证券的共同影响。
2、动量反转选股
有效市场假说分三个层次,分别为弱有效市场、 半强有效市场、 强有效市场分别代表价格反映了历史信息、公开信息和全部信息。
动量效应(Momentum Effect)指的是投资策略或组合的持有期业绩方向和形成期业绩方向一致的股价波动现象;
而反转效应(ContrarianEffect)则指的是投资策略或组合的持有期业绩方向和形成期业绩方向相反的股价波动现象。
3、分类和回归树(Classification and regression tree)
分类和回归树是数据挖掘技术的一种,以递归分割技术为基础(常用于制药学的研究),包括分类树和回归树:分类树产生定性输出,回归树处理定量输出。
4、神经网络(Neural networks)
因为股市的建模与预测所处理的信息量往往十分庞大,因此对算法有很严格要求,它的非线性动力学特性也非常复杂,所以一般传统的方法对于股市的预测往往难如人意。人工神经网络不仅具有大规模并行模拟处理、网络全局作用和非线性动力学等特点,而且有很强的自适应、自学习以及容错能力,具备传统的建模方法所不具有的许多优点,其可以不必事先知道有关被建模对象的参数、结构以及动态特性等方面的知识, 对被建模对象经验知识要求不高。 而只需给出对象的输入和输出数,通过网络本身的学习功能即可实现输入和输出之间的映射。
Ⅱ 你好,通达信MACD指标
通达信MACD徐小明定量结构指标公式(分类:指标源码)通达信MACD定量结构指标是MACD称为指数平滑移动平均线,是从双指数移动平均线发展而来的,由快的指数移动平均线(EMA12)减去慢的指数移动平均线(EMA26)得到快线DIF,再用2×(快线DIF-DIF的9日加权移动均线DEA)得到MACD柱