导航:首页 > 源码编译 > 基站安全模式算法

基站安全模式算法

发布时间:2024-07-31 17:17:44

❶ 无线传感器网络操作系统TinyOS的目录

第1章 绪论 1
1.1 无线传感器网络概述 1
1.1.1 无线传感器网络的研究进展 2
1.1.2 无线传感器网络的体系特征 3
1.2 无线传感器网络操作系统 8
1.2.1 无线传感器网络对操作系统的需求 8
1.2.2 现有的无线传感器网络操作系统 10
1.3 TinyOS操作系统概述 13
1.3.1 设计理念 14
1.3.2 技术特点 15
1.3.3 体系结构 16
1.3.4 版本说明 17
1.4 与其他WSN操作系统的比较 20
1.5 本书章节安排 24
第2章 开发环境 26
2.1 TinyOS 2.1在Windows中的安装 26
2.1.1 搭建Java环境 27
2.1.2 安装Cygwin平台 30
2.1.3 安装平台交叉编译器 34
2.1.4 安装TinyOS源码与工具包 36
2.1.5 安装Graphviz图形工具 38
2.2 其他安装方法 39
2.2.1 在Ubuntu 9.10中的安装 39
2.2.2 使用RPM包的手动安装 41
2.2.3 TinyOS 1.x升级到TinyOS 2.x 42
2.2.4 使用CVS更新TinyOS 2.x文件 46
2.3 TinyOS安装后的测试 47
2.3.1 TinyOS文件概览 47
2.3.2 检查运行环境 48
2.3.3 仿真测试 49
2.4 程序的编译和下载 50
2.4.1 代码编辑工具 50
2.4.2 编译程序 52
2.4.3 USB串口驱动 53
2.4.4 下载程序 54
2.5 本章小结 57
第3章 nesC编程语言 58
3.1 nesC语言简介 58
3.2 nesC语言规范 59
3.2.1 接口 61
3.2.2 组件 62
3.2.3 模块及其组成 65
3.2.4 配件及其组成 68
3.3 基于nesC语言的应用程序 73
3.3.1 nesC应用程序简介 73
3.3.2 Blink实例 77
3.3.3 BlinkSingle实例 82
3.3.4 移植TinyOS 1.x代码到2.x 86
3.4 nesC程序运行模型 88
3.4.1 任务 88
3.4.2 内部函数 91
3.4.3 分阶段作业 92
3.4.4 同步与异步 94
3.4.5 原子性代码 95
3.4.6 无线模块的开启过程 96
3.5 编程约定 98
3.5.1 通用约定 98
3.5.2 软件包 98
3.5.3 语法约定 99
3.5.4 TinyOS约定 101
3.6 可视化组件关系图 103
3.7 本章小结 104
第4章 基本操作 106
4.1 点对点的无线通信 106
4.1.1 主动消息概述 106
4.1.2 通信接口和组件 107
4.1.3 消息缓存抽象 109
4.1.4 通过无线电发送消息 110
4.1.5 通过无线电接收消息 117
4.2 节点与PC的串口通信 119
4.2.1 信息源和端口测试 119
4.2.2 基站和监听工具 121
4.2.3 MIG消息接口生成工具 123
4.2.4 SerialForwarder和其他信息源 126
4.2.5 发送信息包到串口 129
4.2.6 基于printf库的打印调试 130
4.2.7 常见的串口通信故障 133
4.3 传感 134
4.3.1 传感简介 134
4.3.2 Sense实例 135
4.3.3 Oscilloscope实例 138
4.4 存储 140
4.4.1 存储简介 140
4.4.2 配置数据的存储 141
4.4.3 日志数据的存储 146
4.4.4 大数据块的存储 148
4.5 本章小结 149
第5章 系统内核 151
5.1 硬件抽象架构 151
5.1.1 架构简介 151
5.1.2 不同层次抽象的结合 154
5.1.3 横向分解 155
5.1.4 微处理器抽象 156
5.1.5 HIL抽象级别 156
5.2 任务和调度 157
5.2.1 任务简介 157
5.2.2 TinyOS 1.x的任务和调度器 157
5.2.3 TinyOS 2.x的任务 159
5.2.4 TinyOS 2.x的调度器 160
5.2.5 调度器的替换 162
5.2.6 调度器的具体实现 165
5.3 系统启动顺序 168
5.3.1 启动顺序简介 168
5.3.2 TinyOS 1.x的启动顺序 168
5.3.3 TinyOS 2.x的启动接口 169
5.3.4 TinyOS 2.x的启动顺序 170
5.3.5 系统启动和软件初始化 174
5.4 资源仲裁 175
5.4.1 资源简介 175
5.4.2 资源类型 176
5.4.3 资源仲裁 178
5.4.4 共享资源的应用实例 183
5.5 微控制器的电源管理 187
5.5.1 微控制器电源管理简介 187
5.5.2 TinyOS 1.x的电源管理 188
5.5.3 TinyOS 2.x的电源管理 189
5.5.4 外围设备和子系统 191
5.6 外围设备的电源管理 191
5.6.1 外围设备电源管理简介 191
5.6.2 电源管理模型 192
5.6.3 显式电源管理 193
5.6.4 隐式电源管理 196
5.7 串口通信 199
5.7.1 串口通信协议简介 199
5.7.2 串口协议栈的实现 200
5.7.3 串口协议栈的抽象 207
5.8 本章小结 207
第6章 平台与仿真 210
6.1 平台 210
6.1.1 平台简介 210
6.1.2 底层I/O口 211
6.1.3 新平台的建立 215
6.1.4 CC2430平台的移植 223
6.2 编译系统 226
6.2.1 编译系统简介 226
6.2.2 自定义编译系统 227
6.2.3 makefile入门 228
6.2.4 编写Makefile文件 230
6.2.5 编译工具 232
6.3 TOSSIM仿真 233
6.3.1 TOSSIM简介 233
6.3.2 仿真编译 234
6.3.3 基于Python的仿真 237
6.3.4 调试语句 239
6.3.5 网络配置 242
6.3.6 变量的观察 250
6.3.7 注入消息包 253
6.3.8 C++接口 256
6.3.9 gdb调试 258
6.4 本章小结 261
第7章 网络协议 262
7.1 分发协议 262
7.1.1 分发协议简介 262
7.1.2 相关接口和组件 263
7.1.3 EasyDissemination实例 265
7.1.4 Drip库和DIP库 269
7.2 汇聚协议 276
7.2.1 汇聚协议简介 276
7.2.2 相关接口和组件 277
7.2.3 CTP协议 279
7.2.4 CTP实现 281
7.2.5 EasyCollection实例 287
7.3 本章小结 291
第8章 高级应用技术 293
8.1 低功耗应用程序 293
8.1.1 能耗管理简介 293
8.1.2 外围设备的电源管理 294
8.1.3 无线模块的电源管理 297
8.1.4 微处理器的电源管理 300
8.1.5 低功耗传感的应用实例 300
8.2 低功耗监听 300
8.2.1 低功耗监听简介 300
8.2.2 相关接口 302
8.2.3 message_t元数据 304
8.2.4 HAL层的改进建议 305
8.3 TOSThreads线程 305
8.3.1 TOSThreads线程简介 305
8.3.2 nesC语言的API接口 306
8.3.3 C语言的API接口 309
8.3.4 支持新的系统服务 310
8.4 CC2420联网安全功能 312
8.4.1 CC2420安全模式简介 313
8.4.2 发送端的配置 313
8.4.3 接收端的配置 314
8.4.4 RadioCountToLeds实例 315
8.5 本章小结 319
第9章 基于TinyOS的应用开发实例 320
9.1 基于TSL2550传感器的光照检测 320
9.1.1 TSL2550简介 320
9.1.2 驱动实现 323
9.1.3 传感测试 330
9.2 基于GSM短信的远程数据传输 334
9.2.1 系统简介 334
9.2.2 功能实现 338
9.2.3 短信测试 348
9.3 基于简单蚁群算法的路由协议 350
9.3.1 算法简介 350
9.3.2 协议实现 353
9.3.3 仿真测试 366
9.4 本章小结 370
附录A nesC语言基本语法 371
附录B TinyOS编程技巧 374
附录C 英汉对照术语表 375
参考文献与网址 378

❷ 什么是加密通信

在移动通信时代,手机通信能否享受“加密通信”的待遇呢?答案是肯定的。早在2014年苹果手机曝出信息安全漏洞之时,上海等地公务员已开始更换国产加密手机,以规避信息泄露风险。目前,上海各级政府机关开通“加密通信”业务的已超过3万户。加密通信主要是指运营商和手机厂商联合为用户特别定制,利用安全技术提供商密级通话加密,同时提供手机个人信息保护和手机丢失安全保护的服务。
“加密通信”的日益红火,让不少用户开始弃用苹果、三星等品牌,重新将目光转向国产手机,这也让国产手机厂商重拾信心。目前,酷派、华为、中兴、海信等国产品牌推出的10余款加密手机,已通过国家密码管理局认证。由于技术特点,目前三大运营商中,电信是国内唯一获得政府批准商用加密通信服务的运营商,其核心加密算法也由国家密码管理局指定。
“与普通加密手段相比,‘加密通信’采用端到端全程加密技术,一话一密,话音在终端、空中接口和网络之间全程采用密文传送方式,令通话难以被窃听。”中国电信相关人员介绍,在使用过程中,除了启动加密通话模式避免信息被窃取之外,用户还可通过开启安全模式、设置安全密码等方式对手机信息进行保护。
如果看过007系列电影,你肯定会对主角邦德接任务的场景留下深刻印象:接完任务后,无论磁带还是公用话亭,都会自动销毁。据了解,一些高端加密手机同样具备这一强大功能,开启阅后即焚模式后,短信一经读取,瞬间就会直接损毁,再也无法看到。采用密送方式发送短信,即使伪基站也无法拦截;手机丢失后,如果直接开机,可远程定位所在位置,并获取使用者照片……当然,加密通信并非零门槛,用户如需享用加密通信,通话双方必须均是中国电信天翼CDMA网络用户,且均要使用加密手机,并开通加密功能。

❸ 无线路由器中 WEP wpa wpa2 这三种加密方式有什么区别 应该选择哪一种

目前无线路由器里带有的加密模式主要有:WEP,WPA-PSK(TKIP),WPA2-PSK(AES)和WPA-PSK(TKIP)+WPA2-PSK(AES)。
WEP(有线等效加密)
WEP是WiredEquivalentPrivacy的简称,802.11b标准里定义的一个用于无线局域网(WLAN)的安全性协议。WEP被用来提供和有线lan同级的安全性。LAN天生比WLAN安全,因为LAN的物理结构对其有所保护,部分或全部网络埋在建筑物里面也可以防止未授权的访问。
经由无线电波的WLAN没有同样的物理结构,因此容易受到攻击、干扰。WEP的目标就是通过对无线电波里的数据加密提供安全性,如同端-端发送一样。 WEP特性里使用了rsa数据安全性公司开发的rc4prng算法。如果你的无线基站支持MAC过滤,推荐你连同WEP一起使用这个特性(MAC过滤比加密安全得多)。
尽管从名字上看似乎是一个针对有线网络的安全选项,其实并不是这样。WEP标准在无线网络的早期已经创建,目标是成为无线局域网WLAN的必要的安全防护层,但是WEP的表现无疑令人非常失望。它的根源在于设计上存在缺陷。在使用WEP的系统中,在无线网络中传输的数据是使用一个随机产生的密钥来加密的。但是,WEP用来产生这些密钥的方法很快就被发现具有可预测性,这样对于潜在的入侵者来说,就可以很容易的截取和破解这些密钥。即使是一个中等技术水平的无线黑客也可以在两到三分钟内迅速的破解WEP加密。
IEEE802.11的动态有线等效保密(WEP)模式是二十世纪九十年代后期设计的,当时功能强大的加密技术作为有效的武器受到美国严格的出口限制。由于害怕强大的加密算法被破解,无线网络产品是被被禁止出口的。然而,仅仅两年以后,动态有线等效保密模式就被发现存在严重的缺点。但是二十世纪九十年代的错误不应该被当着无线网络安全或者IEEE802.11标准本身,无线网络产业不能等待电气电子工程师协会修订标准,因此他们推出了动态密钥完整性协议 TKIP(动态有线等效保密的补丁版本)。
尽管WEP已经被证明是过时且低效的,但是今天在许多现代的无线访问点和无线路由器中,它依然被支持的加密模式。不仅如此,它依然是被个人或公司所使用的最多的加密方法之一。如果你正在使用WEP加密,如果你对你的网络的安全性非常重视的话,那么以后尽可能的不要再使用WEP,因为那真的不是很安全。
WPA-PSK(TKIP)
无线网络最初采用的安全机制是WEP(有线等效加密),但是后来发现WEP是很不安全的,802.11组织开始着手制定新的安全标准,也就是后来的 802.11i协议。但是标准的制定到最后的发布需要较长的时间,而且考虑到消费者不会因为为了网络的安全性而放弃原来的无线设备,因此Wi-Fi联盟在标准推出之前,在802.11i草案的基础上,制定了一种称为WPA(Wi-FiProctedAccess)的安全机制,它使用TKIP(临时密钥完整性协议),它使用的加密算法还是WEP中使用的加密算法RC4,所以不需要修改原来无线设备的硬件,WPA针对WEP中存在的问题:IV过短、密钥管理过于简单、对消息完整性没有有效的保护,通过软件升级的方法提高网络的安全性。
WPA的出现给用户提供了一个完整的认证机制,AP根据用户的认证结果决定是否允许其接入无线网络中;认证成功后可以根据多种方式(传输数据包的多少、用户接入网络的时间等)动态地改变每个接入用户的加密密钥。另外,对用户在无线中传输的数据包进行MIC编码,确保用户数据不会被其他用户更改。作为 802.11i标准的子集,WPA的核心就是IEEE802.1x和TKIP(TemporalKeyIntegrity Protocol)。
WPA考虑到不同的用户和不同的应用安全需要,例如:企业用户需要很高的安全保护(企业级),否则可能会泄露非常重要的商业机密;而家庭用户往往只是使用网络来浏览Internet、收发E-mail、打印和共享文件,这些用户对安全的要求相对较低。为了满足不同安全要求用户的需要,WPA中规定了两种应用模式:企业模式,家庭模式(包括小型办公室)。根据这两种不同的应用模式,WPA的认证也分别有两种不同的方式。对于大型企业的应用,常采用“802.1x+EAP”的方式,用户提供认证所需的凭证。但对于一些中小型的企业网络或者家庭用户,WPA也提供一种简化的模式,它不需要专门的认证服务器。这种模式叫做“WPA预共享密钥(WPA- PSK)”,它仅要求在每个WLAN节点(AP、无线路由器、网卡等)预先输入一个密钥即可实现。
这个密钥仅仅用于认证过程,而不用于传输数据的加密。数据加密的密钥是在认证成功后动态生成,系统将保证“一户一密”,不存在像WEP那样全网共享一个加密密钥的情形,因此大大地提高了系统的安全性。
WPA2-PSK(AES)
在802.11i颁布之后,Wi-Fi联盟推出了WPA2,它支持AES(高级加密算法),因此它需要新的硬件支持,它使用CCMP(计数器模式密码块链消息完整码协议)。在WPA/WPA2中,PTK的生成依赖PMK,而PMK获的有两种方式,一个是PSK的形式就是预共享密钥,在这种方式中 PMK=PSK,而另一种方式中,需要认证服务器和站点进行协商来产生PMK。
IEEE802.11所制定的是技术性标准,Wi-Fi联盟所制定的是商业化标准,而Wi-Fi所制定的商业化标准基本上也都符合IEEE所制定的技术性标准。WPA(Wi-FiProtectedAccess)事实上就是由Wi-Fi联盟所制定的安全性标准,这个商业化标准存在的目的就是为了要支持 IEEE802.11i这个以技术为导向的安全性标准。而WPA2其实就是WPA的第二个版本。WPA之所以会出现两个版本的原因就在于Wi-Fi联盟的商业化运作。
我们知道802.11i这个任务小组成立的目的就是为了打造一个更安全的无线局域网,所以在加密项目里规范了两个新的安全加密协定–TKIP与 CCMP(有些无线网路设备中会以AES、AES-CCMP的字眼来取代CCMP)。其中TKIP虽然针对WEP的弱点作了重大的改良,但保留了RC4算法和基本架构,言下之意,TKIP亦存在着RC4本身所隐含的弱点。因而802.11i再打造一个全新、安全性更强、更适合应用在无线局域网环境的加密协定-CCMP。所以在CCMP就绪之前,TKIP就已经完成了。
但是要等到CCMP完成,再发布完整的IEEE802.11i标准,可能尚需一段时日,而Wi-Fi联盟为了要使得新的安全性标准能够尽快被布署,以消弭使用者对无线局域网安全性的疑虑,进而让无线局域网的市场可以迅速扩展开来,因而使用已经完成TKIP的IEEE802.11i第三版草案 (IEEE802.11i draft3)为基准,制定了WPA。而于IEEE完成并公布IEEE802.11i无线局域网安全标准后,Wi-Fi联盟也随即公布了WPA第2版 (WPA2)。
WPA = IEEE 802.11i draft 3 = IEEE 802.1X/EAP +WEP(选择性项目)/TKIP
WPA2 = IEEE 802.11i = IEEE 802.1X/EAP + WEP(选择性项目)/TKIP/CCMP
还有最后一种加密模式就是WPA-PSK(TKIP)+WPA2-PSK(AES),这是目前无线路由里最高的加密模式,目前这种加密模式因为兼容性的问题,还没有被很多用户所使用。目前最广为使用的就是WPA-PSK(TKIP)和WPA2-PSK(AES)两种加密模式。相信在经过加密之后的无线网络,一定能够让我们的用户安心放心的上网冲浪。

阅读全文

与基站安全模式算法相关的资料

热点内容
怎样把js代码加密 浏览:798
frp服务器百度云 浏览:790
12306算法 浏览:628
单片机驱动小马达 浏览:100
pythoncookbook27 浏览:516
c的指针和python 浏览:186
python写sftp 浏览:957
读文pdf 浏览:507
pythonnumpy内积 浏览:782
linux硬盘模式 浏览:15
怎么查安卓的空间 浏览:589
linux命令复制命令 浏览:115
劳动法里面有没有带工资算法的 浏览:456
如何在u盘里拷解压软件 浏览:689
oracle数据库登陆命令 浏览:614
python自动化运维之路 浏览:401
eclipsejava教程下载 浏览:988
tita搜索app怎么配置 浏览:263
oracle的连接命令 浏览:1002
基于单片机的恒温水壶 浏览:884