导航:首页 > 源码编译 > 对数运算法则题及答案

对数运算法则题及答案

发布时间:2024-07-31 22:09:15

1. 对数的运算法

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

(1)对数运算法则题及答案扩展阅读:

对数的历史:

16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。约翰·纳皮尔(J.Napier,1550—1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数.对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。

恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。”

对数发明之前,人们对三角运算中将三角函数的积化为三角函数的和或差的方法已很熟悉,而且德国数学家斯蒂弗尔(M.Stifel,约1487—1567)在《综合算术》(1544年)中阐述了一种如下所示的一种对应关系:

同时该种关系之间存在的运算性质(即上面一行数字的乘、除、乘方、开方对应于下面一行数字的加、减、乘、除)也已广为人知。经过对运算体系的多年研究,纳皮尔在1614年出版了《奇妙的对数定律说明书》,书中借助运动学,用几何术语阐述了对数方法。

2. 对数和指数怎么运算

一、对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

二、指数的运算法则:

1、[a^m]×[a^n]=a^(m+n)

2、[a^m]÷[a^n]=a^(m-n)

3、[a^m]^n=a^(mn)

4、[ab]^m=(a^m)×(a^m)

记忆口决:

有理数的指数幂,运算法则要记住。

指数加减底不变,同底数幂相乘除。

指数相乘底不变,幂的乘方要清楚。

积商乘方原指数,换底乘方再乘除。

非零数的零次幂,常值为 1不糊涂。

负整数的指数幂,指数转正求倒数。

看到分数指数幂,想到底数必非负。

乘方指数是分子,根指数要当分母。

(2)对数运算法则题及答案扩展阅读

指数的相关历史:

1607 年,利玛窦和徐光启合译欧几里得的 《几何原本》,在译本中徐光启重新使用了幂字,并有注解:“自乘之数曰幂。”这是第一次给幂这个概念下定义。

至十七世纪,具有“现代”意义的指数符号才出现。最初的,只是表示未知数之次数,但并无出现未知量符号。比尔吉则把罗马数字写于系数数字之上,以表示未知量次数。

其后,开普勒等亦采用了这符号。罗曼斯开始写出未知量的字母。1631 年,哈里奥特( 1560-1621) 改进了韦达的记法,以 aa表示q^2 , 以aaa 表示q^3。

1636 年,居于巴黎的苏格兰人休姆( James Hume) 以小罗马数字放于字母之右上角的方式表达指数,该表示方式除了用的是罗马数字外,已与现在的指数表示法相同。笛卡儿( 1596-1650) 以较小的印度阿拉伯数字放于右上角来表示指数,是现今通用的指数表示法。

3. 怎样算对数什么是对数

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b。

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

阅读全文

与对数运算法则题及答案相关的资料

热点内容
unix网关命令 浏览:875
想自己做网站要学编程吗 浏览:597
租个服务器开个私服需要什么 浏览:272
图片换成pdf格式 浏览:663
javamidi编程 浏览:833
android60demo 浏览:69
头条算法怎么复习 浏览:514
灯光控制通道可以编程设置吗 浏览:783
webpack命令行 浏览:807
卸载云服务器操作系统 浏览:31
java文件移动文件夹 浏览:451
针织公斤足称算法 浏览:460
电脑下载的图片从文件夹重新编组 浏览:645
安卓源码编译引导失败 浏览:676
苹果怎么添加自定义app文件夹 浏览:930
橙牛app怎么找客服 浏览:307
php对象魔术方法 浏览:487
OBV能量潮幅图指标源码 浏览:915
编程15个好习惯 浏览:678
电脑u盘文件夹显示屏幕保护程序 浏览:803