① 如何在后台部署深度学习模型
搭建深度学习后台服务器
我们的Keras深度学习REST API将能够批量处理图像,扩展到多台机器(包括多台web服务器和Redis实例),并在负载均衡器之后进行循环调度。
为此,我们将使用:
KerasRedis(内存数据结构存储)
Flask (python的微web框架)
消息队列和消息代理编程范例
本篇文章的整体思路如下:
我们将首先简要讨论Redis数据存储,以及如何使用它促进消息队列和消息代理。然后,我们将通过安装所需的Python包来配置Python开发环境,以构建我们的Keras深度学习REST API。一旦配置了开发环境,就可以使用Flask web框架实现实际的Keras深度学习REST API。在实现之后,我们将启动Redis和Flask服务器,然后使用cURL和Python向我们的深度学习API端点提交推理请求。最后,我们将以对构建自己的深度学习REST API时应该牢记的注意事项的简短讨论结束。
第一部分:简要介绍Redis如何作为REST API消息代理/消息队列
测试和原文的命令一致。
第三部分:配置Python开发环境以构建Keras REST API
文章中说需要创建新的虚拟环境来防止影响系统级别的python项目(但是我没有创建),但是还是需要安装rest api所需要依赖的包。以下为所需要的包。
第四部分:实现可扩展的Keras REST API
首先是Keras Redis Flask REST API数据流程图
让我们开始构建我们的服务器脚本。为了方便起见,我在一个文件中实现了服务器,但是它可以按照您认为合适的方式模块化。为了获得最好的结果和避免复制/粘贴错误,我建议您使用本文的“下载”部分来获取相关的脚本和图像。
为了简单起见,我们将在ImageNet数据集上使用ResNet预训练。我将指出在哪里可以用你自己的模型交换ResNet。flask模块包含flask库(用于构建web API)。redis模块将使我们能够与redis数据存储接口。从这里开始,让我们初始化将在run_keras_server.py中使用的常量.
我们将向服务器传递float32图像,尺寸为224 x 224,包含3个通道。我们的服务器可以处理一个BATCH_SIZE = 32。如果您的生产系统上有GPU(s),那么您需要调优BATCH_SIZE以获得最佳性能。我发现将SERVER_SLEEP和CLIENT_SLEEP设置为0.25秒(服务器和客户端在再次轮询Redis之前分别暂停的时间)在大多数系统上都可以很好地工作。如果您正在构建一个生产系统,那么一定要调整这些常量。
让我们启动我们的Flask app和Redis服务器:
在这里你可以看到启动Flask是多么容易。在运行这个服务器脚本之前,我假设Redis服务器正在运行(之前的redis-server)。我们的Python脚本连接到本地主机6379端口(Redis的默认主机和端口值)上的Redis存储。不要忘记将全局Keras模型初始化为None。接下来我们来处理图像的序列化:
Redis将充当服务器上的临时数据存储。图像将通过诸如cURL、Python脚本甚至是移动应用程序等各种方法进入服务器,而且,图像只能每隔一段时间(几个小时或几天)或者以很高的速率(每秒几次)进入服务器。我们需要把图像放在某个地方,因为它们在被处理前排队。我们的Redis存储将作为临时存储。
为了将图像存储在Redis中,需要对它们进行序列化。由于图像只是数字数组,我们可以使用base64编码来序列化图像。使用base64编码还有一个额外的好处,即允许我们使用JSON存储图像的附加属性。
base64_encode_image函数处理序列化。类似地,在通过模型传递图像之前,我们需要反序列化图像。这由base64_decode_image函数处理。
预处理图片
我已经定义了一个prepare_image函数,它使用Keras中的ResNet50实现对输入图像进行预处理,以便进行分类。在使用您自己的模型时,我建议修改此函数,以执行所需的预处理、缩放或规范化。
从那里我们将定义我们的分类方法
classify_process函数将在它自己的线程中启动,我们将在下面的__main__中看到这一点。该函数将从Redis服务器轮询图像批次,对图像进行分类,并将结果返回给客户端。
在model = ResNet50(weights="imagenet")这一行中,我将这个操作与终端打印消息连接起来——根据Keras模型的大小,加载是即时的,或者需要几秒钟。
加载模型只在启动这个线程时发生一次——如果每次我们想要处理一个映像时都必须加载模型,那么速度会非常慢,而且由于内存耗尽可能导致服务器崩溃。
加载模型后,这个线程将不断轮询新的图像,然后将它们分类(注意这部分代码应该时尚一部分的继续)
在这里,我们首先使用Redis数据库的lrange函数从队列(第79行)中获取最多的BATCH_SIZE图像。
从那里我们初始化imageIDs和批处理(第80和81行),并开始在第84行开始循环队列。
在循环中,我们首先解码对象并将其反序列化为一个NumPy数组image(第86-88行)。
接下来,在第90-96行中,我们将向批处理添加图像(或者如果批处理当前为None,我们将该批处理设置为当前图像)。
我们还将图像的id附加到imageIDs(第99行)。
让我们完成循环和函数
在这个代码块中,我们检查批处理中是否有图像(第102行)。如果我们有一批图像,我们通过模型(第105行)对整个批进行预测。从那里,我们循环一个图像和相应的预测结果(110-122行)。这些行向输出列表追加标签和概率,然后使用imageID将输出存储在Redis数据库中(第116-122行)。
我们使用第125行上的ltrim从队列中删除了刚刚分类的图像集。最后,我们将睡眠设置为SERVER_SLEEP时间并等待下一批图像进行分类。下面我们来处理/predict我们的REST API端点
稍后您将看到,当我们发布到REST API时,我们将使用/predict端点。当然,我们的服务器可能有多个端点。我们使用@app。路由修饰符以第130行所示的格式在函数上方定义端点,以便Flask知道调用什么函数。我们可以很容易地得到另一个使用AlexNet而不是ResNet的端点,我们可以用类似的方式定义具有关联函数的端点。你懂的,但就我们今天的目的而言,我们只有一个端点叫做/predict。
我们在第131行定义的predict方法将处理对服务器的POST请求。这个函数的目标是构建JSON数据,并将其发送回客户机。如果POST数据包含图像(第137和138行),我们将图像转换为PIL/Pillow格式,并对其进行预处理(第141-143行)。
在开发这个脚本时,我花了大量时间调试我的序列化和反序列化函数,结果发现我需要第147行将数组转换为C-contiguous排序(您可以在这里了解更多)。老实说,这是一个相当大的麻烦事,但我希望它能帮助你站起来,快速跑。
如果您想知道在第99行中提到的id,那么实际上是使用uuid(通用唯一标识符)在第151行生成的。我们使用UUID来防止hash/key冲突。
接下来,我们将图像的id和base64编码附加到d字典中。使用rpush(第153行)将这个JSON数据推送到Redis db非常简单。
让我们轮询服务器以返回预测
我们将持续循环,直到模型服务器返回输出预测。我们开始一个无限循环,试图得到157-159条预测线。从这里,如果输出包含预测,我们将对结果进行反序列化,并将结果添加到将返回给客户机的数据中。我们还从db中删除了结果(因为我们已经从数据库中提取了结果,不再需要将它们存储在数据库中),并跳出了循环(第163-172行)。
否则,我们没有任何预测,我们需要睡觉,继续投票(第176行)。如果我们到达第179行,我们已经成功地得到了我们的预测。在本例中,我们向客户机数据添加True的成功值(第179行)。注意:对于这个示例脚本,我没有在上面的循环中添加超时逻辑,这在理想情况下会为数据添加一个False的成功值。我将由您来处理和实现。最后我们称烧瓶。jsonify对数据,并将其返回给客户端(第182行)。这就完成了我们的预测函数。
为了演示我们的Keras REST API,我们需要一个__main__函数来实际启动服务器
第186-196行定义了__main__函数,它将启动classify_process线程(第190-192行)并运行Flask应用程序(第196行)。
第五部分:启动可伸缩的Keras REST API
要测试我们的Keras深度学习REST API,请确保使用本文的“下载”部分下载源代码示例图像。从这里,让我们启动Redis服务器,如果它还没有运行:
然后,在另一个终端中,让我们启动REST API Flask服务器:
另外,我建议在向服务器提交请求之前,等待您的模型完全加载到内存中。现在我们可以继续使用cURL和Python测试服务器。
第七部分:使用cURL访问Keras REST API
使用cURL来测试我们的Keras REST API服务器。这是我的家庭小猎犬Jemma。根据我们的ResNet模型,她被归类为一只拥有94.6%自信的小猎犬。
你会在你的终端收到JSON格式的预测:
第六部分:使用Python向Keras REST API提交请求
如您所见,使用cURL验证非常简单。现在,让我们构建一个Python脚本,该脚本将发布图像并以编程方式解析返回的JSON。
让我们回顾一下simple_request.py
我们在这个脚本中使用Python请求来处理向服务器提交数据。我们的服务器运行在本地主机上,可以通过端口5000访问端点/predict,这是KERAS_REST_API_URL变量(第6行)指定的。
我们还定义了IMAGE_PATH(第7行)。png与我们的脚本在同一个目录中。如果您想测试其他图像,请确保指定到您的输入图像的完整路径。
让我们加载图像并发送到服务器:
我们在第10行以二进制模式读取图像并将其放入有效负载字典。负载通过请求发送到服务器。在第14行发布。如果我们得到一个成功消息,我们可以循环预测并将它们打印到终端。我使这个脚本很简单,但是如果你想变得更有趣,你也可以使用OpenCV在图像上绘制最高的预测文本。
第七部分:运行简单的请求脚本
编写脚本很容易。打开终端并执行以下命令(当然,前提是我们的Flask服务器和Redis服务器都在运行)。
使用Python以编程方式使用我们的Keras深度学习REST API的结果
第八部分:扩展深度学习REST API时的注意事项
如果您预期在深度学习REST API上有较长一段时间的高负载,那么您可能需要考虑一种负载平衡算法,例如循环调度,以帮助在多个GPU机器和Redis服务器之间平均分配请求。
记住,Redis是内存中的数据存储,所以我们只能在队列中存储可用内存中的尽可能多的图像。
使用float32数据类型的单个224 x 224 x 3图像将消耗602112字节的内存。
② 做大数据分析一般用什么工具呢
java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
③ 学Python有前途么
毋庸置疑,Python前景很广阔。首先,对应岗位多。Python被称为编程语言中的万能胶水,这是一门应用面很广的语言,被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。【更系统全面的学习资料,点击查看】
无论是国内的网络、字节跳动、阿里巴巴、腾讯、华为还是国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在用Python完成各种各样的任务。其次,市场需求大。从最新Python招聘岗位需求来看,Python工程师的岗位需求量巨大,并且岗位需求量还在呈现上涨的趋势。全国Python岗位需求量接近10W个。最后,薪资水平。目前初级Python工程师薪资待遇就达10-15K,而随着开发年限的增加,Python开发者薪资呈直线上升的变化趋势,工作8年的Python薪资攀升至25K左右。此外,国家也在加大培养Python人才。国务院发布《新一代人工智能发展规划》,人工智能正式纳入国家发展战略,并且已经有数个省份将Python纳入到高考体系,国家计算机二级考试新增 “ Python 语言程序设计”科目。总的来说,Python是很有前途的,符合时代发展的大方向,感兴趣的小伙伴,可以放心大胆的去尝试。关于Python培训的更多相关知识,建议到千锋教育进行更详细的了解,目前,千锋教育已在北京、深圳、上海、广州、郑州、大连等20余个核心城市建立直营校区,等待你的随听。【千锋IT培训机构,热门IT课程试听名额限时领取】
④ 怎么在keras中定义自己的目标函数
Keras作为一个深度学习库,非常适合新手。在做神经网络时,它自带了许多常用的目标函数,优化方法等等,基本能满足新手学习时的一些需求。具体包含目标函数和优化方法。但它也支持用户自定义目标函数,下边介绍一种最简单的自定义目标函数的方法。
要实现自定义目标函数,自然想到先看下Keras中的目标函数是怎么定义的。查下源码发现在Keras/objectives.py中,Keras定义了一系列的目标函数。
def mean_squared_error(y_true, y_pred):
return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
return 100. * K.mean(diff, axis=-1)
def mean_squared_logarithmic_error(y_true, y_pred):
first_log = K.log(K.clip(y_pred, K.epsilon(), np.inf) + 1.)
second_log = K.log(K.clip(y_true, K.epsilon(), np.inf) + 1.)
return K.mean(K.square(first_log - second_log), axis=-1)
def squared_hinge(y_true, y_pred):
return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)
def hinge(y_true, y_pred):
return K.mean(K.maximum(1. - y_true * y_pred, 0.), axis=-1)
def categorical_crossentropy(y_true, y_pred):
'''Expects a binary class matrix instead of a vector of scalar classes.
'''
return K.categorical_crossentropy(y_pred, y_true)
def sparse_categorical_crossentropy(y_true, y_pred):
'''expects an array of integer classes.
Note: labels shape must have the same number of dimensions as output shape.
If you get a shape error, add a length-1 dimension to labels.
'''
return K.sparse_categorical_crossentropy(y_pred, y_true)
def binary_crossentropy(y_true, y_pred):
return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)
def kullback_leibler_divergence(y_true, y_pred):
y_true = K.clip(y_true, K.epsilon(), 1)
y_pred = K.clip(y_pred, K.epsilon(), 1)
return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
def poisson(y_true, y_pred):
return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
def cosine_proximity(y_true, y_pred):
y_true = K.l2_normalize(y_true, axis=-1)
y_pred = K.l2_normalize(y_pred, axis=-1)
return -K.mean(y_true * y_pred, axis=-1)
555657585960
看到源码后,事情就简单多了,我们只要仿照这源码的定义形式,来定义自己的loss就可以了。例如举个最简单的例子,我们定义一个loss为预测值与真实值的差,则可写为:
def my_koss(y_true,y_pred):
return K.mean((y_pred-y_true),axis = -1)1212
然后,将这段代码放到你的模型中编译,例如
def my_loss(y_true,y_pred):
return K.mean((y_pred-y_true),axis = -1)
model.compile(loss=my_loss,
optimizer='SGD',
metrics=['accuracy'])1234512345
有一点需要注意,Keras作为一个高级封装库,它的底层可以支持theano或者tensorflow,在使用上边代码时,首先要导入这一句
from keras import backend as K11
这样你自定义的loss函数就可以起作用了。
⑤ 13个最常用的Python深度学习库介绍
13个最常用的Python深度学习库介绍
如果你对深度学习和卷积神经网络感兴趣,但是并不知道从哪里开始,也不知道使用哪种库,那么这里就为你提供了许多帮助。
在这篇文章里,我详细解读了9个我最喜欢的Python深度学习库。
这个名单并不详尽,它只是我在计算机视觉的职业生涯中使用并在某个时间段发现特别有用的一个库的列表。
这其中的一些库我比别人用的多很多,尤其是Keras、mxnet和sklearn-theano。
其他的一些我是间接的使用,比如Theano和TensorFlow(库包括Keras、deepy和Blocks等)。
另外的我只是在一些特别的任务中用过(比如nolearn和他们的Deep Belief Network implementation)。
这篇文章的目的是向你介绍这些库。我建议你认真了解这里的每一个库,然后在某个具体工作情境中你就可以确定一个最适用的库。
我想再次重申,这份名单并不详尽。此外,由于我是计算机视觉研究人员并长期活跃在这个领域,对卷积神经网络(细胞神经网络)方面的库会关注更多。
我把这个深度学习库的列表分为三个部分。
第一部分是比较流行的库,你可能已经很熟悉了。对于这些库,我提供了一个通俗的、高层次的概述。然后,针对每个库我详细解说了我的喜欢之处和不喜欢之处,并列举了一些适当的应用案例。
第二部分进入到我个人最喜欢的深度学习库,也是我日常工作中使用最多的,包括:Keras、mxnet和sklearn-theano等。
最后,我对第一部分中不经常使用的库做了一个“福利”板块,你或许还会从中发现有用的或者是在第二板块中我还没有尝试过但看起来很有趣的库。
接下来就让我们继续探索。
针对初学者:
Caffe
提到“深度学习库”就不可能不说到Caffe。事实上,自从你打开这个页面学习深度学习库,我就敢打保票你肯定听说Caffe。
那么,究竟Caffe是什么呢?
Caffe是由Berkeley Vision and Learning Center(BVLC)建立的深度学习框架。它是模块化的,速度极快。而且被应用于学术界和产业界的start-of-the-art应用程序中。
事实上,如果你去翻阅最新的深度学习出版物(也提供源代码),你就很可能会在它们相关的GitHub库中找到Caffe模型。
虽然Caffe本身并不是一个Python库,但它提供绑定到Python上的编程语言。我们通常在新领域开拓网络的时候使用这些绑定。
我把Caffe放在这个列表的原因是它几乎被应用在各个方面。你可以在一个空白文档里定义你的模型架构和解决方案,建立一个JSON文件类型的.prototxt配置文件。Caffe二进制文件提取这些.prototxt文件并培训你的网络。Caffe完成培训之后,你可以把你的网络和经过分类的新图像通过Caffe二进制文件,更好的就直接通过Python或MATLAB的API。
虽然我很喜欢Caffe的性能(它每天可以在K40 GPU上处理60万张图片),但相比之下我更喜欢Keras和mxnet。
主要的原因是,在.prototxt文件内部构建架构可能会变得相当乏味和无聊。更重要的是, Caffe不能用编程方式调整超参数!由于这两个原因,在基于Python的API中我倾向于对允许我实现终端到终端联播网的库倾斜(包括交叉验证和调整超参数)。
Theano
在最开始我想说Theano是美丽的。如果没有Theano,我们根本不会达到现有的深度学习库的数量(特别是在Python)。同样的,如果没有numpy,我们就不会有SciPy、scikit-learn和 scikit-image,,同样可以说是关于Theano和深度学习更高级别的抽象。
非常核心的是,Theano是一个Python库,用来定义、优化和评估涉及多维数组的数学表达式。 Theano通过与numpy的紧密集成,透明地使用GPU来完成这些工作。
虽然可以利用Theano建立深度学习网络,但我倾向于认为Theano是神经网络的基石,同样的numpy是作为科学计算的基石。事实上,大多数我在文章中提到的库都是围绕着Theano,使自己变得更加便利。
不要误会我的意思,我爱Theano,我只是不喜欢用Theano编写代码。
在Theano建设卷积神经网络就像只用本机Python中的numpy写一个定制的支持向量机(SVM),当然这个对比并不是很完美。
你可以做到吗?
当然可以。
它值得花费您的时间和精力吗?
嗯,也许吧。这取决于你是否想摆脱低级别或你的应用是否需要。
就个人而言,我宁愿使用像Keras这样的库,它把Theano包装成更有人性化的API,同样的方式,scikit-learn使机器学习算法工作变得更加容易。
TensorFlow
与Theano类似,TensorFlow是使用数据流图进行数值计算的开源库(这是所有神经网络固有的特征)。最初由谷歌的机器智能研究机构内的Google Brain Team研究人员开发,此后库一直开源,并提供给公众。
相比于Theano ,TensorFlow的主要优点是分布式计算,特别是在多GPU的环境中(虽然这是Theano正在攻克的项目)。
除了用TensorFlow而不是Theano替换Keras后端,对于TensorFlow库我并没有太多的经验。然而在接下来的几个月里,我希望这有所改变。
Lasagne
Lasagne是Theano中用于构建和训练网络的轻量级库。这里的关键词是轻量级的,也就意味着它不是一个像Keras一样围绕着Theano的重包装的库。虽然这会导致你的代码更加繁琐,但它会把你从各种限制中解脱出来,同时还可以让您根据Theano进行模块化的构建。
简而言之:Lasagne的功能是Theano的低级编程和Keras的高级抽象之间的一个折中。
我最喜欢的:
Keras
如果我必须选出一个最喜欢的深度学习Python库,我将很难在Keras和mxnet中做出抉择——但最后,我想我会选Keras。
说真的,Keras的好处我说都说不完。
Keras是一个最低限度的、模块化的神经网络库,可以使用Theano或TensorFlow作为后端。Keras最主要的用户体验是,从构思到产生结果将会是一个非常迅速的过程。
在Keras中架构网络设计是十分轻松自然的。它包括一些state-of-the-art中针对优化(Adam,RMSProp)、标准化(BatchNorm)和激活层(PReLU,ELU,LeakyReLU)最新的算法。
Keras也非常注重卷积神经网络,这也是我十分需要的。无论它是有意还是无意的,我觉得从计算机视觉的角度来看这是非常有价值的。
更重要的是,你既可以轻松地构建基于序列的网络(其中输入线性流经网络)又可以创建基于图形的网络(输入可以“跳过”某些层直接和后面对接)。这使得创建像GoogLeNet和SqueezeNet这样复杂的网络结构变得容易得多。
我认为Keras唯一的问题是它不支持多GPU环境中并行地训练网络。这可能会也可能不会成为你的大忌。
如果我想尽快地训练网络,那么我可能会使用mxnet。但是如果我需要调整超参数,我就会用Keras设置四个独立的实验(分别在我的Titan X GPUs上运行)并评估结果。
mxnet
我第二喜欢的深度学习Python库无疑就是mxnet(重点也是训练图像分类网络)。虽然在mxnet中站立一个网络可能需要较多的代码,但它会提供给你惊人数量的语言绑定(C ++、Python、R、JavaScript等)。
Mxnet库真正出色的是分布式计算,它支持在多个CPU / GPU机训练你的网络,甚至可以在AWS、Azure以及YARN集群。
它确实需要更多的代码来设立一个实验并在mxnet上运行(与Keras相比),但如果你需要跨多个GPU或系统分配训练,我推荐mxnet。
sklearn-theano
有时候你并不需要终端到终端的培养一个卷积神经网络。相反,你需要把CNN看作一个特征提取器。当你没有足够的数据来从头培养一个完整的CNN时它就会变得特别有用。仅仅需要把你的输入图像放入流行的预先训练架构,如OverFeat、AlexNet、VGGNet或GoogLeNet,然后从FC层提取特征(或任何您要使用的层)。
总之,这就是sklearn-theano的功能所在。你不能用它从头到尾的训练一个模型,但它的神奇之处就是可以把网络作为特征提取器。当需要评估一个特定的问题是否适合使用深度学习来解决时,我倾向于使用这个库作为我的第一手判断。
nolearn
我在PyImageSearch博客上用过几次nolearn,主要是在我的MacBook Pro上进行一些初步的GPU实验和在Amazon EC2 GPU实例中进行深度学习。
Keras把 Theano和TensorFlow包装成了更具人性化的API,而nolearn也为Lasagne做了相同的事。此外,nolearn中所有的代码都是与scikit-learn兼容的,这对我来说绝对是个超级的福利。
我个人不使用nolearn做卷积神经网络(CNNs),但你当然也可以用(我更喜欢用Keras和mxnet来做CNNs)。我主要用nolearn来制作Deep Belief Networks (DBNs)。
DIGITS
DIGITS并不是一个真正的深度学习库(虽然它是用Python写的)。DIGITS(深度学习GPU培训系统)实际上是用于培训Caffe深度学习模式的web应用程序(虽然我认为你可以破解源代码然后使用Caffe以外其他的后端进行工作,但这听起来就像一场噩梦)。
如果你曾经用过Caffe,那么你就会知道通过它的终端来定义.prototxt文件、生成图像数据、运行网络并监管你的网络训练是相当繁琐的。 DIGITS旨在通过让你在浏览器中执行这些任务来解决这个问题。
此外,DIGITS的用户界面非常出色,它可以为你提供有价值的统计数据和图表作为你的模型训练。另外,你可以通过各种输入轻松地可视化网络中的激活层。最后,如果您想测试一个特定的图像,您可以把图片上传到你的DIGITS服务器或进入图片的URL,然后你的Caffe模型将会自动分类图像并把结果显示在浏览器中。干净利落!
Blocks
说实话,虽然我一直想尝试,但截至目前我的确从来没用过Blocks(这也是我把它包括在这个列表里的原因)。就像许多个在这个列表中的其他库一样,Blocks建立在Theano之上,呈现出一个用户友好型的API。
deepy
如果让你猜deepy是围绕哪个库建立的,你会猜什么?
没错,就是Theano。
我记得在前一段时间用过deepy(做了初始提交),但在接下里的大概6-8个月我都没有碰它了。我打算在接下来的博客文章里再尝试一下。
pylearn2
虽然我从没有主动地使用pylearn2,但由于历史原因,我觉得很有必要把它包括在这个列表里。 Pylearn2不仅仅是一般的机器学习库(地位类似于scikit-learn),也包含了深度学习算法的实现。
对于pylearn2我最大的担忧就是(在撰写本文时),它没有一个活跃的开发者。正因为如此,相比于像Keras和mxnet这样的有积极维护的库,推荐pylearn2我还有些犹豫。
Deeplearning4j
这本应是一个基于Python的列表,但我想我会把Deeplearning4j包括在这里,主要是出于对他们所做事迹的无比崇敬——Deeplearning4j为JVM建立了一个开源的、分布式的深度学习库。
如果您在企业工作,你可能会有一个塞满了用过的Hadoop和MapRece服务器的储存器。也许这些你还在用,也许早就不用了。
你怎样才能把这些相同的服务器应用到深度学习里?
事实证明是可以的——你只需要Deeplearning4j。
总计
以上就是本文关于13个最常用的Python深度学习库介绍的全部内容