A. ICP算法的迭代就近点算法
在20世纪80年代中期,很多学者开始对点集数据的配准进行了大量研究。1987年,Horn[1]、Arun[2]等人用四元数法提出点集对点集配准方法。这种点集与点集坐标系匹配算法通过实践证明是一个解决复杂配准问题的关键方法。1992年,计算机视觉研究者Besl和Mckay[3]介绍了一种高层次的基于自由形态曲面的配准方法,也称为迭代就近点法ICP(Iterative Closest Point)。以点集对点集(PSTPS)配准方法为基础,他们阐述了一种曲面拟合算法,该算法是基于四元数的点集到点集配准方法。从测量点集中确定其对应的就近点点集后,运用Faugera和Hebert提出的方法计算新的就近点点集。用该方法进行迭代计算,直到残差平方和所构成的目标函数值不变,结束迭代过程。ICP配准法主要用于解决基于自由形态曲面的配准问题。
迭代就近点法ICP就近点法经过十几年的发展,不断地得到了完善和补充。Chen和Medioni[4]及Bergevin等人[5]提出了point-to-plane搜索就近点的精确配准方法。Rusinkiewicz和Levoy提出了point-to-p rojection搜索就近点的快速配准方法。Soon-Yong和Murali提出了Contractive-projection-point搜索就近点的配准方法。此外,Andrew和Sing[6]提取了基于彩色三维扫描数据点纹理信息的数据配准方法,主要在ICP算法中考虑三维扫描点的纹理色彩信息进行搜索就近点。Natasha等人[7]分析了ICP算法中的点云数据配准质量问题。
基本原理
三维空间R3存在两组含有n个坐标点的点集,分别为: PL和PR。三维空间点集PL中各点经过三维空间变换后与点集PR中点一一对应,其单点变换关系式为:
(0-1)
上式中,R为三维旋转矩阵,t为平移向量。
在ICP配准方法中,空间变换参数向量X可表示为[9] 。参数向量中四元数参数满足约束条件为:
(0-2)
根据迭代的初值X0,由式(0-1)计算新点集Pi为:
(0-3)
式中,P表示原始未修改过的点集,Pi的下标i表示迭代次数,参数向量X的初始值X0为 。
根据以上数据处理方法,ICP配准算法可以概括为以下七个步骤:
1) 根据点集Plk中的点坐标,在曲面S上搜索相应就近点点集Prk;
2) 计算两个点集的重心位置坐标,并进行点集中心化生成新的点集;
3) 由新的点集计算正定矩阵N,并计算N的最大特征值及其最大特征向量;
4) 由于最大特征向量等价于残差平方和最小时的旋转四元数,将四元数转换为旋转矩阵R;
5) 在旋转矩阵R被确定后,由平移向量t仅仅是两个点集的重心差异,可以通过两个坐标系中的重心点和旋转矩阵确定;
6) 根据式(0-3),由点集Plk计算旋转后的点集P’lk。通过Plk与P’lk计算距离平方和值为fk+1。以连续两次距离平方和之差绝对值 作为迭代判断数值;
7) 当 时,ICP配准算法就停止迭代,否则重复1至6步,直到满足条件 后停止迭代。
B. 人脸识别技术是什么
人脸识别是基于人的面部特征信息进行身份识别的一种生物识别技术。它通过采集含有人脸的图片或视频流,并在图片中自动检测和跟踪人脸,进而对检测到的人脸进行面部识别。人脸识别可提供图像或视频中的人脸检测定位、人脸属性识别、人脸比对、活体检测等功能。虹软科技在人脸识别方面做的不错
C. ICP算法的介绍
三维空间R3存在两组含有n个坐标点的点集,分别为: PL和PR。三维空间点集PL中各点经过三维空间变换后与点集PR中点一一对应,其单点变换关系式为:(0-1)上式中,R为三维旋转矩阵,t为平移向量。在ICP配准方法中,空间变换参数向量X可表示为[9] 。参数向量中四元数参数满足约束条件为:(0-2)根据迭代的初值X0,由式(0-1)计算新点集Pi为:(0-3)式中,P表示原始未修改过的点集,Pi的下标i表示迭代次数,参数向量X的初始值X0为 。根据以上数据处理方法,ICP配准算法可以概括为以下七个步骤:1) 根据点集Plk中的点坐标,在曲面S上搜索相应就近点点集Prk;2) 计算两个点集的重心位置坐标,并进行点集中心化生成新的点集;3) 由新的点集计算正定矩阵N,并计算N的最大特征值及其最大特征向量;4) 由于最大特征向量等价于残差平方和最小时的旋转四元数,将四元数转换为旋转矩阵R;5) 在旋转矩阵R被确定后,由平移向量t仅仅是两个点集的重心差异,可以通过两个坐标系中的重心点和旋转矩阵确定;6) 根据式(0-3),由点集Plk计算旋转后的点集P’lk。通过Plk与P’lk计算距离平方和值为fk+1。以连续两次距离平方和之差绝对值 作为迭代判断数值;7) 当 时,ICP配准算法就停止迭代,否则重复1至6步,直到满足条件 后停止迭代