⑴ org.apache.spark.api.java.optional在哪个包下
如果你想看源码的话:https://github.com/apache/spark/blob/master/core/src/main/java/org/apache/spark/api/java/Optional.java
如果你只想导入包的话(了解不多,1.6版本可以导入google的optional,网络“com.google.common”,2.1版本已有自己的optional):在spark-core_对应版本号.jar。
⑵ spark最佳实践电子版 spark是什么版本
《Spark大数据处理技术》以Spark 0.9版本为基础进行编写,是一本全面介绍Spark及Spark生态圈相关技术的书籍,是国内首本深入介绍Spark原理和架构的技术书籍。主要内容有Spark基础功能介绍及内部重要模块分析,包括部署模式、调度框架、存储管理以及应用监控;同时也详细介绍了Spark生态圈中其他的软件和模块,包括SQL处理引擎Shark和Spark SQL、流式处理引擎Spark Streaming、图计算框架Graphx以及分布式内存文件系统Tachyon。《Spark大数据处理技术》从概念和原理上对Spark核心框架和生态圈做了详细的解读,并对Spark的应用现状和未来发展做了一定的介绍,旨在为大数据从业人员和Spark爱好者提供一个更深入学习的平台。
《Spark大数据处理技术》适合任何大数据、Spark领域的从业人员阅读,同时也为架构师、软件开发工程师和大数据爱好者展现了一个现代大数据框架的架构原理和实现细节。相信通过学《Spark大数据处理技术》,读者能够熟悉和掌握Spark这一当前流行的大数据框架,并将其投入到生产实践中去。
《Spark大数据处理:技术、应用与性能优化》根据最新技术版本,系统、全面、详细讲解Spark的各项功能使用、原理机制、技术细节、应用方法、性能优化,以及BDAS生态系统的相关技术。
通过上面两本熟悉Spark的原理架构以及应用,想深入学习的话,还有《Apache Spark源码剖析》,它全面、系统地介绍了Spark源码,深入浅出。
⑶ apache spark是什么意思
Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎,是一种快速、通用、可扩展的大数据分析引擎,是一种与 Hadoop 相似的开源集群计算环境。
2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目。
目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、SparkStreaming、GraphX、MLlib等子项目,Spark是基于内存计算的大数据并行计算框架,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。
⑷ spark独立模式还需要编译吗
spark有三种集群部署方式:
1、独立部署模式standalone,spark自身有一套完整的资源管理方式
2、架构于hadoop之上的spark集群
3、架构于mesos之上的spark集群
尝试了下搭建第一种独立部署模式集群,将安装方式记录如下:
环境ubuntu 12.04 (两台),部署方式是和hadoop类似,先在一台机器上部署成功后直接将文件打包拷贝到其他机器上,这里假设现在A机器上部署,并且A为master,最后B为slave
A和B均上创建用户spark
sudo useradd spark
以后spark的目录在集群所有机器的/home/spark/spark下(第一个spark是用户名,第二个spark是spark文件目录名)
保证A能无密码登陆到B上的spark用户,在ssh里面设置
这部分是现在master机器(A)上配置
0 首先保证A能无密码方式ssh至localhost和B ,具体方式参见: 点击打开链接
0.1 在A机器上执行
ssh-keygen -t rsa
cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys
ssh localhost
那么A可以实现无密码登陆localhost
0.2 在B机器上执行
ps -e|grep ssh
如果出现:
695 ? 00:00:00 sshd
1754 ? 00:00:00 ssh-agent
若没有sshd那么在B上执行
sudo apt-get install openssh-server
在B上安装ssh服务端(ubuntu有可能默认只有agent端)
0.3 在B上执行:
ssh-keygen -t rsa
scp spark@A:~/.ssh/authorized_keys ~/.ssh
第一句是为了保证在B上有.ssh目录
第二句是将A的公钥拷贝到B上,从而实现A无密码访问B
0.4 在A上执行gedit ~/.ssh/config添加
user spark
这里是为了A以默认用户spark无密码登陆B,其实这一步没有必要,因为A和B机器上都是在spark用户下操作的,那么机器A的saprk执行ssh B也是以spark用户登陆的
1 每台机器确保有java ,一个简单的方式:
sudo apt-get install eclipse
2 需要maven编译spark源码 ,下载maven 点击打开链接 ,随便下载一个版本
简单的方式:
sudo apt-get install maven
复杂的方式:
wget http://mirrors.cnnic.cn/apache/maven/maven-3/3.2.2/binaries/apache-maven-3.2.2-bin.tar.gz
tar -zxvf apache-maven-3.2.2-bin.tar.gz
mv apache-maven-3.2.2-bin.tar.gz maven
sudo mv maven /usr/local
然后gedit /etc/profile末尾添加如下:
#set maven environment
M2_HOME=/usr/local/maven
export MAVEN_OPTS="-Xms256m -Xmx512m"
export PATH=$M2_HOME/bin:$PATH
验证maven安装成功:
source /etc/profile
mvn -v
出现类似语句:Apache Maven 3.2.2 (; 2014-06-17T21:51:42+08:00)
3 下载spark, 点击打开链接 ,注意不要下载带有hadoop之类字样的版本,而是source package比如spark-1.0.0.tgz
tar -zxvf spark-1.0.0.tgz
mv spark-1.0.0 spark
cd spark
sh make-distribution.sh
最后一步会
编译spark源码
,过程可能有点长,取决于网络和机器配置,我的用了19min,编译成功类似如下图(图来自网上):
4 配置spark
4.1 gedit ./conf/spark-env.sh在spark-env.sh末尾添加如下:
export SPARK_MASTER_IP=A
export SPARK_WORKER_CORES=1
export SPARK_WORKER_INSTANCES=1
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_MEMORY=1g
export MASTER=spark://${SPARK_MASTER_IP}:${SPARK_MASTER_PORT}
注意这里的SPARK_MASTER_IP我觉得还是设置为master机器的IP地址比较好,这里我假设master的hostname是A
SPARK_WORKER_INSTANCES表示slave机器的数目,这里只有B一台故设为1
4.2 gedit ./conf/slaves添加B的hostname,这里B机器的hostname假设就为B故在文件中追加一个B即可。文件里原来有一个localhost如果你想要master同时也为worker机器那么可保留该行,否则可以删除
5 验证master机器A能否单机启动spark
⑸ 如何修改spark中的example
(1) 下载spark源码,地址https://github.com/apache/spark
(2) 导入到IDE中,可以用IDEA这个编辑器,找到example这个项目
就可以编辑了,前提是你要熟悉scala
⑹ 如何使用intellij搭建spark开发环境
注意,客户端和虚拟集群中hadoop、spark、scala的安装目录是一致的,这样开发的spark应用程序的时候不需要打包spark开发包和scala的库文件,减少不必要的网络IO和磁盘IO。当然也可以不一样,不过在使用部署工具spark-submit的时候需要参数指明classpath。
1:IDEA的安装
官网jetbrains.com下载IntelliJ IDEA,有Community Editions 和& Ultimate Editions,前者免费,用户可以选择合适的版本使用。
根据安装指导安装IDEA后,需要安装scala插件,有两种途径可以安装scala插件:
启动IDEA -> Welcome to IntelliJ IDEA -> Configure -> Plugins -> Install JetBrains plugin... -> 找到scala后安装。
启动IDEA -> Welcome to IntelliJ IDEA -> Open Project -> File -> Settings -> plugins -> Install JetBrains plugin... -> 找到scala后安装。
如果你想使用那种酷酷的黑底界面,在File -> Settings -> Appearance -> Theme选择Darcula,同时需要修改默认字体,不然菜单中的中文字体不能正常显示。2:建立Spark应用程序
下面讲述如何建立一个Spark项目week2(,正在录制视频),该项目包含3个object:
取自spark examples源码中的SparkPi
计词程序WordCount1
计词排序程序WordCount2
A:建立新项目
创建名为dataguru的project:启动IDEA -> Welcome to IntelliJ IDEA -> Create New Project -> Scala -> Non-SBT -> 创建一个名为week2的project(注意这里选择自己安装的JDK和scala编译器) -> Finish。
设置week2的project structure
增加源码目录:File -> Project Structure -> Meles -> week2,给week2创建源代码目录和资源目录,注意用上面的按钮标注新增加的目录的用途。
增加开发包:File -> Project Structure -> Libraries -> + -> java -> 选择
/app/hadoop/spark100/lib/spark-assembly-1.0.0-hadoop2.2.0.jar
/app/scala2104/lib/scala-library.jar可能会提示错误,可以根据fix提示进行处理
B:编写代码
在源代码scala目录下创建1个名为week2的package,并增加3个object(SparkPi、WordCoun1、WordCount2):
SparkPi代码
package week2
import scala.math.random
import org.apache.spark._
/** Computes an approximation to pi */
object SparkPi {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Spark Pi")
val spark = new SparkContext(conf)
val slices = if (args.length > 0) args(0).toInt else 2
val n = 100000 * slices
val count = spark.parallelize(1 to n, slices).map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
if (x*x + y*y < 1) 1 else 0
}.rece(_ + _)
println("Pi is roughly " + 4.0 * count / n)
spark.stop()
}
}
复制代码
WordCount1代码
package week2
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.SparkContext._
object WordCount1 {
def main(args: Array[String]) {
if (args.length == 0) {
System.err.println("Usage: WordCount1 <file1>")
System.exit(1)
}
val conf = new SparkConf().setAppName("WordCount1")
val sc = new SparkContext(conf)
sc.textFile(args(0)).flatMap(_.split(" ")).map(x => (x, 1)).receByKey(_ + _).take(10).foreach(println)
sc.stop()
}
}
复制代码
WordCount2代码
package week2
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.SparkContext._
object WordCount2 {
def main(args: Array[String]) {
if (args.length == 0) {
System.err.println("Usage: WordCount2 <file1>")
System.exit(1)
}
val conf = new SparkConf().setAppName("WordCount2")
val sc = new SparkContext(conf)
sc.textFile(args(0)).flatMap(_.split(" ")).map(x => (x, 1)).receByKey(_ + _).map(x=>(x._2,x._1)).sortByKey(false).map(x=>(x._2,x._1)).take(10).foreach(println)
sc.stop()
}
}
复制代码
C:生成程序包
生成程序包之前要先建立一个artifacts,File -> Project Structure -> Artifacts -> + -> Jars -> From moudles with dependencies,然后随便选一个class作为主class。
按OK后,对artifacts进行配置,修改Name为week2,删除Output Layout中week2.jar中的几个依赖包,只剩week2项目本身。
按OK后, Build -> Build Artifacts -> week2 -> rebuild进行打包,经过编译后,程序包放置在out/artifacts/week2目录下,文件名为week2.jar。
3:Spark应用程序部署
将生成的程序包week2.jar复制到spark安装目录下,切换到用户hadoop,然后切换到/app/hadoop/spark100目录,进行程序包的部署。具体的部署参见应用程序部署工具spark-submit 。
⑺ GitHub上面有哪些经典的java框架源码
Bazel:来自Google的构建工具,可以快速、可靠地构建代码。官网
Gradle:使用Groovy(非XML)进行增量构建,可以很好地与Maven依赖管理配合工作。官网
Buck:Facebook构建工具。官网
字节码操作
编程方式操作字节码的开发库。
ASM:通用底层字节码操作和分析开发库。官网
Byte Buddy:使用流式API进一步简化字节码生成。官网
Byteman:在运行时通过DSL(规则)操作字节码进行测试和故障排除。官网
Javassist:一个简化字节码编辑尝试。官网
集群管理
在集群内动态管理应用程序的框架。
Apache Aurora:Apache Aurora是一个Mesos框架,用于长时间运行服务和定时任务(cron job)。官网
Singularity:Singularity是一个Mesos框架,方便部署和操作。它支持Web Service、后台运行、调度作业和一次性任务。官网
代码分析
测量代码指标和质量工具。
Checkstyle:代码编写规范和标准静态分析工具。官网
Error Prone:将常见编程错误作为运行时错误报告。官网
FindBugs:通过字节码静态分析查找隐藏bug。官网
jQAssistant:使用基于Neo4J查询语言进行代码静态分析。官网
PMD:对源代码分析查找不良的编程习惯。官网
SonarQube:通过插件集成其它分析组件,对过去一段时间内的数据进行统计。官网
编译器生成工具
用来创建解析器、解释器或编译器的框架。
ANTLR:复杂的全功能自顶向下解析框架。官网
JavaCC:JavaCC是更加专门的轻量级工具,易于上手且支持语法超前预测。官网
外部配置工具
支持外部配置的开发库。
config:针对JVM语言的配置库。官网
owner:减少冗余配置属性。官网
约束满足问题求解程序
帮助解决约束满足问题的开发库。
Choco:可直接使用的约束满足问题求解程序,使用了约束规划技术。官网
JaCoP:为FlatZinc语言提供了一个接口,可以执行MiniZinc模型。官网
OptaPlanner:企业规划与资源调度优化求解程序。官网
Sat4J:逻辑代数与优化问题最先进的求解程序。官网
持续集成
Bamboo:Atlassian解决方案,可以很好地集成Atlassian的其他产品。可以选择开源许可,也可以购买商业版。官网
CircleCI:提供托管服务,可以免费试用。官网
Codeship:提供托管服务,提供有限的免费模式。官网
fabric8:容器集成平台。官网
Go:ThoughtWork开源解决方案。官网
Jenkins:支持基于服务器的部署服务。官网
TeamCity:JetBrain的持续集成解决方案,有免费版。官网
Travis:通常用作开源项目的托管服务。官网
Buildkite: 持续集成工具,用简单的脚本就能设置pipeline,而且能快速构建,可以免费试用。官网
CSV解析
简化CSV数据读写的框架与开发库
uniVocity-parsers:速度最快功能最全的CSV开发库之一,同时支持TSV与固定宽度记录的读写。官网
数据库
简化数据库交互的相关工具。
Apache Phoenix:HBase针对低延时应用程序的高性能关系数据库层。官网
Crate:实现了数据同步、分片、缩放、复制的分布式数据存储。除此之外还可以使用基于SQL的语法跨集群查询。官网
Flyway:简单的数据库迁移工具。官网
H2:小型SQL数据库,以可以作为内存数据库使用着称。官网
HikariCP:高性能JDBC连接工具。官网
JDBI:便捷的JDBC抽象。官网
Protobuf:Google数据交换格式。官网
SBE:简单二进制编码,是最快速的消息格式之一。官网
Wire:整洁轻量级协议缓存。官网
帮实现依赖翻转范式的开发库。官网
Apache DeltaSpike:CDI扩展框架。官网
Dagger2:编译时注入框架,不需要使用反射。官网
Guice:可以匹敌Dagger的轻量级注入框架。官网
HK2:轻量级动态依赖注入框架。官网
开发流程增强工具
从最基本的层面增强开发流程。
ADT4J:针对代数数据类型的JSR-269代码生成器。官网
AspectJ:面向切面编程(AOP)的无缝扩展。官网
Auto:源代码生成器集合。官网
DCEVM:通过修改JVM在运行时支持对已加载的类进行无限次重定义。官网
HotswapAgent:支持无限次重定义运行时类与资源。官网
Immutables:类似Scala的条件类。官网
JHipster:基于Spring Boot与AngularJS应用程序的Yeoman源代码生成器。官网
JRebel:无需重新部署,可以即时重新加载代码与配置的商业软件。官网
Lombok:减少冗余的代码生成器。官网
Spring Loaded:类重载代理。官网
vert.x:多语言事件驱动应用框架。官网
分布式应用
用来编写分布式容错应用的开发库和框架。
Akka:用来编写分布式容错并发事件驱动应用程序的工具和运行时。官网
Apache Storm:实时计算系统。官网
Apache ZooKeeper:针对大型分布式系统的协调服务,支持分布式配置、同步和名称注册。官网
Hazelcast:高可扩展内存数据网格。官网
Hystrix:提供延迟和容错。官网
JGroups:提供可靠的消息传递和集群创建的工具。官网
Orbit:支持虚拟角色(Actor),在传统角色的基础上增加了另外一层抽象。官网
Quasar:为JVM提供轻量级线程和角色。官网
分布式数据库
对应用程序而言,在分布式系统中的数据库看起来就像是只有一个数据源。
Apache Cassandra:列式数据库,可用性高且没有单点故障。官网
Apache HBase:针对大数据的Hadoop数据库。官网
Druid:实时和历史OLAP数据存储,在聚集查询和近似查询方面表现不俗。官网
Infinispan:针对缓存的高并发键值对数据存储。官网
发布
以本机格式发布应用程序的工具。
Bintray:发布二进制文件版本控制工具。可以于Maven或Gradle一起配合使用。提供开源免费版本和几种商业收费版本。官网
Central Repository:最大的二进制组件仓库,面向开源社区提供免费服务。Apache Maven默认使用Central官网Repository,也可以在所有其他构建工具中使用。
IzPack:为跨平台部署建立创作工具(Authoring Tool)。官网
JitPack:打包GitHub仓库的便捷工具。可根据需要构建Maven、Gradle项目,发布可立即使用的组件。官网
Launch4j:将JAR包装为轻量级本机Windows可执行程序。官网
Nexus:支持代理和缓存功能的二进制管理工具。官网
packr:将JAR、资源和JVM打包成Windows、Linux和Mac OS X本地发布文件。官网
文档处理工具
处理Office文档的开发库。
Apache POI:支持OOXML规范(XLSX、DOCX、PPTX)以及OLE2规范(XLS、DOC、PPT)。官网
documents4j:使用第三方转换器进行文档格式转换,转成类似MS Word这样的格式。官网
jOpenDocument:处理OpenDocument格式(由Sun公司提出基于XML的文档格式)。官网
函数式编程
函数式编程支持库。
Cyclops:支持一元(Monad)操作和流操作工具类、comprehension(List语法)、模式匹配、trampoline等特性。官网
Fugue:Guava的函数式编程扩展。官网
Functional Java:实现了多种基础和高级编程抽象,用来辅助面向组合开发(composition-oriented development)。官网
Javaslang:一个函数式组件库,提供持久化数据类型和函数式控制结构。官网
jOOλ:旨在填补Java 8 lambda差距的扩展,提供了众多缺失的类型和一组丰富的顺序流API。官网
游戏开发
游戏开发框架。
jMonkeyEngine:现代3D游戏开发引擎。官网
libGDX:全面的跨平台高级框架。官网
LWJGL:对OpenGL/CL/AL等技术进行抽象的健壮框架。官网
GUI
现代图形化用户界面开发库。
JavaFX:Swing的后继者。官网
Scene Builder:开发JavaFX应用的可视化布局工具。官网
高性能计算
涵盖了从集合到特定开发库的高性能计算相关工具。
Agrona:高性能应用中常见的数据结构和工具方法。官网
Disruptor:线程间消息传递开发库。官网
fastutil:快速紧凑的特定类型集合(Collection)。官网
GS Collections:受Smalltalk启发的集合框架。官网
HPPC:基础类型集合。官网
Javolution:实时和嵌入式系统的开发库。官网
JCTools:JDK中缺失的并发工具。官网
Koloboke:Hash set和hash map。官网
Trove:基础类型集合。官网
High-scale-bli:Cliff Click 个人开发的高性能并发库官网
IDE
简化开发的集成开发环境。
Eclipse:老牌开源项目,支持多种插件和编程语言。官网
IntelliJ IDEA:支持众多JVM语言,是安卓开发者好的选择。商业版主要针对企业客户。官网
NetBeans:为多种技术提供集成化支持,包括Java SE、Java EE、数据库访问、HTML5
Imgscalr:纯Java 2D实现,简单、高效、支持硬件加速的图像缩放开发库。官网
Picasso:安卓图片下载和图片缓存开发库。官网
Thumbnailator:Thumbnailator是一个高质量Java缩略图开发库。官网
ZXing:支持多种格式的一维、二维条形码图片处理开发库。官网
im4java: 基于ImageMagick或GraphicsMagick命令行的图片处理开发库,基本上ImageMagick能够支持的图片格式和处理方式都能够处理。官网
Apache Batik:在Java应用中程序以SVG格式显示、生成及处理图像的工具集,包括SVG解析器、SVG生成器、SVG DOM等模块,可以集成使用也可以单独使用,还可以扩展自定义的SVG标签。官网
JSON
简化JSON处理的开发库。
Genson:强大且易于使用的Java到JSON转换开发库。官网
Gson:谷歌官方推出的JSON处理库,支持在对象与JSON之间双向序列化,性能良好且可以实时调用。官网
Jackson:与GSON类似,在频繁使用时性能更佳。官网
LoganSquare:基于Jackson流式API,提供对JSON解析和序列化。比GSON与Jackson组合方式效果更好。官网
Fastjson:一个Java语言编写的高性能功能完善的JSON库。官网
Kyro:快速、高效、自动化的Java对象序列化和克隆库。官网
JVM与JDK
目前的JVM和JDK实现。
JDK 9:JDK 9的早期访问版本。官网
OpenJDK:JDK开源实现。官网
基于JVM的语言
除Java外,可以用来编写JVM应用程序的编程语言。
Scala:融合了面向对象和函数式编程思想的静态类型编程语言。官网
Groovy:类型可选(Optionally typed)的动态语言,支持静态类型和静态编译。目前是一个Apache孵化器项目。官网
Clojure:可看做现代版Lisp的动态类型语言。官网
Ceylon:RedHat开发的面向对象静态类型编程语言。官网
Kotlin:JetBrain针对JVM、安卓和浏览器提供的静态类型编程语言。官网
Xtend:一种静态编程语言,能够将其代码转换为简洁高效的Java代码,并基于JVM运行。官网
日志
记录应用程序行为日志的开发库。
Apache Log4j 2:使用强大的插件和配置架构进行完全重写。官网
kibana:分析及可视化日志文件。官网
Logback:强健的日期开发库,通过Groovy提供很多有趣的选项。官网
logstash:日志文件管理工具。官网
Metrics:通过JMX或HTTP发布参数,并且支持存储到数据库。官网
SLF4J:日志抽象层,需要与具体的实现配合使用。官网
机器学习
提供具体统计算法的工具。其算法可从数据中学习。
Apache Flink:快速、可靠的大规模数据处理引擎。官网
Apache Hadoop:在商用硬件集群上用来进行大规模数据存储的开源软件框架。官网
Apache Mahout:专注协同过滤、聚类和分类的可扩展算法。官网
Apache Spark:开源数据分析集群计算框架。官网
DeepDive:从非结构化数据建立结构化信息并集成到已有数据库的工具。官网
Deeplearning4j:分布式多线程深度学习开发库。官网
H2O:用作大数据统计的分析引擎。官网
Weka:用作数据挖掘的算法集合,包括从预处理到可视化的各个层次。官网
QuickML:高效机器学习库。官网、GitHub
消息传递
在客户端之间进行消息传递,确保协议独立性的工具。
Aeron:高效可扩展的单播、多播消息传递工具。官网
Apache ActiveMQ:实现JMS的开源消息代理(broker),可将同步通讯转为异步通讯。官网
Apache Camel:通过企业级整合模式(Enterprise Integration Pattern EIP)将不同的消息传输API整合在一起。官网
Apache Kafka:高吞吐量分布式消息系统。官网
Hermes:快速、可靠的消息代理(Broker),基于Kafka构建。官网
JBoss HornetQ:清晰、准确、模块化,可以方便嵌入的消息工具。官网
JeroMQ:ZeroMQ的纯Java实现。官网
Smack:跨平台XMPP客户端函数库。官网
Openfire:是开源的、基于XMPP、采用Java编程语言开发的实时协作服务器。 Openfire安装和使用都非常简单,并可利用Web界面进行管理。官网GitHub
Spark:是一个开源,跨平台IM客户端。它的特性支持集组聊天,电话集成和强大安全性能。如果企业内部部署IM使用Openfire+Spark是最佳的组合。官网GitHub
Tigase: 是一个轻量级的可伸缩的 Jabber/XMPP 服务器。无需其他第三方库支持,可以处理非常高的复杂和大量的用户数,可以根据需要进行水平扩展。官网
杂项
未分类其它资源。
Design Patterns:实现并解释了最常见的设计模式。官网
Jimfs:内存文件系统。官网
Lanterna:类似curses的简单console文本GUI函数库。官网
LightAdmin:可插入式CRUD UI函数库,可用来快速应用开发。官网
OpenRefine:用来处理混乱数据的工具,包括清理、转换、使用Web Service进行扩展并将其关联到数据库。官网
RoboVM:Java编写原生iOS应用。官网
Quartz:强大的任务调度库.官网
应用监控工具
监控生产环境中应用程序的工具。
AppDynamics:性能监测商业工具。官网
JavaMelody:性能监测和分析工具。官网
Kamon:Kamon用来监测在JVM上运行的应用程序。官网
New Relic:性能监测商业工具。官网
SPM:支持对JVM应用程序进行分布式事务追踪的性能监测商业工具。官网
Takipi:产品运行时错误监测及调试商业工具。官网
原生开发库
用来进行特定平台开发的原生开发库。
JNA:不使用JNI就可以使用原生开发库。此外,还为常见系统函数提供了接口。官网
自然语言处理
用来专门处理文本的函数库。
Apache OpenNLP:处理类似分词等常见任务的工具。官网
CoreNLP:斯坦佛CoreNLP提供了一组基础工具,可以处理类似标签、实体名识别和情感分析这样的任务。官网
LingPipe:一组可以处理各种任务的工具集,支持POS标签、情感分析等。官网
Mallet:统计学自然语言处理、文档分类、聚类、主题建模等。官网
网络
网络编程函数库。
Async Http Client:异步HTTP和WebSocket客户端函数库。官网
Grizzly:NIO框架,在Glassfish中作为网络层使用。官网
Netty:构建高性能网络应用程序开发框架。官网
OkHttp:一个Android和Java应用的HTTP+SPDY客户端。官网
Undertow:基于NIO实现了阻塞和非阻塞API的Web服务器,在WildFly中作为网络层使用。官网
ORM
处理对象持久化的API。
Ebean:支持快速数据访问和编码的ORM框架。官网
EclipseLink:支持许多持久化标准,JPA、JAXB、JCA和SDO。官网
Hibernate:广泛使用、强健的持久化框架。Hibernate的技术社区非常活跃。官网
MyBatis:带有存储过程或者SQL语句的耦合对象(Couples object)。官网
OrmLite:轻量级开发包,免除了其它ORM产品中的复杂性和开销。官网
Nutz:另一个SSH。官网,Github
JFinal:JAVA WEB + ORM框架。官网,Github
用来帮助创建PDF文件的资源。
Apache FOP:从XSL-FO创建PDF。官网
Apache PDFBox:用来创建和操作PDF的工具集。官网
DynamicReports:JasperReports的精简版。官网
flyingsaucer:XML/XHTML和CSS 2.1渲染器。官网
iText:一个易于使用的PDF函数库,用来编程创建PDF文件。注意,用于商业用途时需要许可证。官网
JasperReports:一个复杂的报表引擎。官网
性能分析
性能分析、性能剖析及基准测试工具。
jHiccup:提供平台中JVM暂停的日志和记录。官网
JMH:JVM基准测试工具。官网
JProfiler:商业分析器。官网
LatencyUtils:测量和报告延迟的工具。官网
VisualVM:对运行中的应用程序信息提供了可视化界面。官网
YourKit Java Profiler:商业分析器。官网
响应式开发库
用来开发响应式应用程序的开发库。
Reactive Streams:异步流处理标准,支持非阻塞式反向压力(backpressure)。官网
Reactor:构建响应式快速数据(fast-data)应用程序的开发库。官网
RxJava:通过JVM可观察序列(observable sequence)构建异步和基于事件的程序。官网
REST框架
用来创建RESTful 服务的框架。
Dropwizard:偏向于自己使用的Web框架。用来构建Web应用程序,使用了Jetty、Jackson、Jersey和Metrics。官网
Feign:受Retrofit、JAXRS-2.0和WebSocket启发的HTTP客户端连接器(binder)。官网
Jersey:JAX-RS参考实现。官网
RESTEasy:经过JAX-RS规范完全认证的可移植实现。官网
RestExpress:一个Java类型安全的REST客户端。官网
RestX:基于注解处理和编译时源码生成的框架。官网
Retrofit:类型安全的REST客户端。官网
Spark:受到Sinatra启发的Java REST框架。官网
Swagger:Swagger是一个规范且完整的框架,提供描述、生产、消费和可视化RESTful Web Service。官网
Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网
科学计算与分析
用于科学计算和分析的函数库。
DataMelt:用于科学计算、数据分析及数据可视化的开发环境。官网
JGraphT:支持数学图论对象和算法的图形库。官网
JScience:用来进行科学测量和单位的一组类。官网
搜索引擎
文档索引引擎,用于搜索和分析。
Apache Solr:一个完全的企业搜索引擎。为高吞吐量通信进行了优化。官网
Elasticsearch:一个分布式、支持多租户(multitenant)全文本搜索引擎。提供了RESTful Web接口和无schema的JSON文档。官网
Apache Lucene:是一个开放源代码的全文检索引擎工具包,是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎。官网
安全
用于处理安全、认证、授权或会话管理的函数库。
Apache Shiro:执行认证、授权、加密和会话管理。官网
Bouncy Castle,涵盖了从基础的帮助函数到PGP/SMIME操作。官网:多途加密开发库。支持JCA提供者(JCA provider)
Cryptomator:在云上进行客户端跨平台透明加密。官网
Keycloak:为浏览器应用和RESTful Web Service集成SSO和IDM。目前还处于beta版本,但是看起来非常有前途。官网
PicketLink:PicketLink是一个针对Java应用进行安全和身份认证管理的大型项目(Umbrella Project)。官网
序列化
用来高效处理序列化的函数库。
FlatBuffers:高效利用内存的序列化函数库,无需解包和解析即可高效访问序列化数据。官网
Kryo:快速、高效的对象图形序列化框架。官网
FST:提供兼容JDK的高性能对象图形序列化。官网
MessagePack:一种高效的二进制序列化格式。官网
应用服务器
用来部署应用程序的服务器。
Apache Tomcat:针对Servlet和JSP的应用服务器,健壮性好且适用性强。官网
Apache TomEE:Tomcat加Java EE。官网
Jetty:轻量级、小巧的应用服务器,通常会嵌入到项目中。官网
WebSphere Liberty:轻量级、模块化应用服务器,由IBM开发。官网
WildFly:之前被称作JBoss,由Red Hat开发。支持很多Java EE功能。官网
模板引擎
在模板中替换表达式的工具。
Apache Velocity:提供HTML页面模板、email模板和通用开源代码生成器模板。官网
FreeMarker:通用模板引擎,不需要任何重量级或自己使用的依赖关系。官网
Handlebars.java:使用Java编写的模板引擎,逻辑简单,支持语义扩展(semantic Mustache)。官网
Thymeleaf:旨在替换JSP,支持XML文件的工具。官网
测试
测试内容从对象到接口,涵盖性能测试和基准测试工具。
Apache JMeter:功能性测试和性能评测。官网
Arquillian:集成测试和功能行测试平台,集成Java EE容器。官网
AssertJ:支持流式断言提高测试的可读性。官网
Awaitility:用来同步异步操作的DSL。官网
Cucumber:BDD测试框架。官网
Gatling:设计为易于使用、可维护的和高性能负载测试工具。官网
Hamcrest:可用来灵活创建意图(intent)表达式的匹配器。官网
JMockit:用来模拟静态、final方法等。官网
JUnit:通用测试框架。官网
Mockito:在自动化单元测试中创建测试对象,为TDD或BDD提供支持。官网
PowerMock: 支持模拟静态方法、构造函数、final类和方法、私有方法以及移除静态初始化器的模拟工具。官网
REST Assured:为REST/HTTP服务提供方便测试的Java DSL。官网
Selenide:为Selenium提供精准的周边API,用来编写稳定且可读的UI测试。官网
Selenium:为Web应用程序提供可移植软件测试框架。官网
Spock:JUnit-compatible framework featuring an expressive Groovy-derived specification language.官网兼容JUnit框架,支持衍生的Groovy范的语言。
TestNG:测试框架。官网
Truth:Google的断言和命题(proposition)框架。官网
Unitils:模块化测试函数库,支持单元测试和集成测试。官网
WireMock:Web Service测试桩(Stub)和模拟函数。官网
通用工具库
通用工具类函数库。
Apache Commons:提供各种用途的函数,比如配置、验证、集合、文件上传或XML处理等。官网
args4j:命令行参数解析器。官网
CRaSH:为运行进行提供CLI。官网
Gephi:可视化跨平台网络图形化操作程序。官网
Guava:集合、缓存、支持基本类型、并发函数库、通用注解、字符串处理、I/O等。官网
JADE:构建、调试多租户系统的框架和环境。官网
javatuples:正如名字表示的那样,提供tuple支持。尽管目前tuple的概念还有留有争议。官网
JCommander:命令行参数解析器。官网
Protégé:提供存在论(ontology)编辑器以及构建知识系统的框架。官网
网络爬虫
用于分析网站内容的函数库。
Apache Nutch:可用于生产环境的高度可扩展、可伸缩的网络爬虫。官网
Crawler4j:简单的轻量级网络爬虫。官网
JSoup:刮取、解析、操作和清理HTML。官网
Web框架
用于处理Web应用程序不同层次间通讯的框架。
Apache Tapestry:基于组件的框架,使用Java创建动态、强健的、高度可扩展的Web应用程序。官网
Apache Wicket:基于组件的Web应用框架,与Tapestry类似带有状态显示GUI。官网
Google Web Toolkit:一组Web开发工具集,包含在客户端将Java代码转为JavaScript的编译器、XML解析器、RCP官网API、JUnit集成、国际化支持和GUI控件。
Grails:Groovy框架,旨在提供一个高效开发环境,使用约定而非配置、没有XML并支持混入(mixin)。官网
Ninja:Java全栈Web开发框架。非常稳固、快速和高效。官网
Pippo:小型、高度模块化的类Sinatra框架。官网
Play:使用约定而非配置,支持代码热加载并在浏览器中显示错误。官网
PrimeFaces:JSF框架,提供免费和带支持的商业版本。包括若干前端组件。官网
Ratpack:一组Java开发函数库,用于构建快速、高效、可扩展且测试完备的HTTP应用程序。官网
Spring Boot:微框架,简化了Spring新程序的开发过程。官网
Spring:旨在简化Java EE的开发过程,提供依赖注入相关组件并支持面向切面编程。官网
Vaadin:基于GWT构建的事件驱动框架。使用服务端架构,客户端使用Ajax。官网
Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网
业务流程管理套件
流程驱动的软件系统构建。
jBPM:非常灵活的业务流程管理框架,致力于构建开发与业务分析人员之间的桥梁。官网
Activity:轻量级工作流和业务流程管理框架。官网github
资源
社区
⑻ spark mllib算法接口源码在什么地方查看
1.1LDA实例实例步骤:1)加载数据返回的数据格式为:documents:RDD[(Long,Vector)],其中:Long为文章ID,Vector为文章分词后的词向量;用户可以读取指定目录下的数据,通过分词以及数据格式的转换,转换成RDD[(Long,Vector)]即可。2)建立模型模型参数设置说明:k:主题数,或者聚类中心数DocConcentration:文章分布的超参数(Dirichlet分布的参数),必需>1.0TopicConcentration:主题分布的超参数(Dirichlet分布的参数),必需>1.0MaxIterations:迭代次数setSeed:随机种子CheckpointInterval:迭代计算时检查点的间隔Optimizer:优化计算方法,目前支持"em","online"3)结果输出topicsMatrix以及topics(word,topic))输出。实例代码如下:[java]viewplainimportorg.apache.log4j.{Level,Logger}importorg.apache.spark.{SparkConf,SparkContext}importorg.apache.spark.mllib.clustering.LDAimportorg.apache.spark.mllib.linalg.Vectorsobjectlda{defmain(args:Array[String]){//0构建Spark对象valconf=newSparkConf().setAppName("lda")valsc=newSparkContext(conf)Logger.getRootLogger.setLevel(Level.WARN)//1加载数据,返回的数据格式为:documents:RDD[(Long,Vector)]//其中:Long为文章ID,Vector为文章分词后的词向量//可以读取指定目录下的数据,通过分词以及数据格式的转换,转换成RDD[(Long,Vector)]即可valdata=sc.textFile("data/mllib/sample_lda_data.txt")valparsedData=data.map(s=>Vectors.dense(s.trim.split('').map(_.toDouble)))//=parsedData.zipWithIndex.map(_.swap).cache()//2建立模型,设置训练参数,训练模型/***k:主题数,或者聚类中心数*DocConcentration:文章分布的超参数(Dirichlet分布的参数),必需>1.0*TopicConcentration:主题分布的超参数(Dirichlet分布的参数),必需>1.0*MaxIterations:迭代次数*setSeed:随机种子*CheckpointInterval:迭代计算时检查点的间隔*Optimizer:优化计算方法,目前支持"em","online"*/valldaModel=newLDA().setK(3).setDocConcentration(5).setTopicConcentration(5).setMaxIterations(20).setSeed(0L).setCheckpointInterval(10).setOptimizer("em").run(corpus)//3模型输出,模型参数输出,结果输出//Outputtopics.Eachisadistributionoverwords(matchingwordcountvectors)println("Learnedtopics(asdistributionsovervocabof"+ldaModel.vocabSize+"words):")valtopics=ldaModel.topicsMatrixfor(topic<-Range(0,3)){print("Topic"+topic+":")for(word<-Range(0,ldaModel.vocabSize)){print(""+topics(word,topic));}println()}}}