Ⅰ dda法生成直线的基本原理是什么为什么说Bersenham画圆的算法效率较高
DDA算法主要是根据直线公式y = kx + b来推导出来的,其关键之处在于如何设定单位步进,即一个方向的步进为单位步进,另一个方向的步进必然是小于1。算法的具体思路如下:
1. 输入直线的起点、终点;
2. 计算x方向的间距:△X和y方向的间距:△Y。
3. 确定单位步进,取MaxSteps = max(△X,△Y); 若△X>=△Y,则X方向的步进为单位步进,X方向步进一个单位,Y方向步进△Y/MaxSteps;否则相反。
4. 设置第一个点的像素值
5. 令循环初始值为1,循环次数为MaxSteps,定义变量x,y,执行以下计算:
a. x增加一个单位步进,y增加一个单位步进
b. 设置位置为(x,y)的像素值
Bresenham算法是DDA算法画线算法的一种改进算法。本质上它也是采取了步进的思想。不过它比DDA算法作了优化,避免了步进时浮点数运算,同时为选取符合直线方程的点提供了一个好思路。首先通过直线的斜率确定了在x方向进行单位步进还是y方向进行单位步进:当斜率k的绝对值|k|<1时,在x方向进行单位步进;当斜率k的绝对值|k|>1时,在y方向进行单位步进。
1. 输入线段的起点和终点。
2. 判断线段的斜率是否存在(即起点和终点的x坐标是否相同),若相同,即斜率不存在,
只需计算y方向的单位步进(△Y+1次),x方向的坐标保持不变即可绘制直线。
3. 计算线段的斜率k,分为下面几种情况处理
a. k等于0,即线段平行于x轴,即程序只需计算x方向的单位步进,y方向的值不变
b. |k|等于1,即线段的x方向的单位步进和y方向的单位步进一样,皆为1。直接循环△X次计算x和y坐标。
4. 根据输入的起点和终点的x、y坐标值的大小决定x方向和y方向的单位步进是1还是-1
6. 画出第一个点。
7. 若|k| <1,设m =0,计算P0,如果Pm>0,下一个要绘制的点为(Xm+单位步进,Ym),
Pm+1 = Pm -2*△Y;
否则要绘制的点为(Xm+单位步进,Ym+单位步进)
Pm+1 = Pm+2*△X-2*△Y;
8. 重复执行第七步△X-1次;
9. 若|k| <1,设m =0,计算Q0,如果Qm>0,下一个要绘制的点为(Xm,Ym+单位步进),
Pm+1 = Pm -2*△X;
否则要绘制的点为(Xm+单位步进,Ym+单位步进)
Pm+1 = Pm+2*△Y-2*△X;
10. 重复执行第9步△Y-1次;
Ⅱ 生成算法的步骤是( )
直线生成算法中的数值/字微分分析法是一种增量计算方法。它按照斜率绝对值|k|<1和|k|>1来递增画描点。|k|<1时,取像素(x,(int)(y+0.5);|k|>1时,取像素((int)(x+0.5),y)。
循环结构需要重复执行同一操作的结构称为循环结构,即从某处开始,按照一定条件反复执行某一处理步骤,反复执行的处理步骤称为循环体。循环结构中通常都有一个起循环计数作用的变量,这个变量的取值一般都包含在执行或终止循环的条件中。
算法原理
SJT算法,即Steinhaus–Johnson–Trotter algorithm,是一种全排列生成算法。在该算法中,不断的寻找一种相邻元素相互交换的顺序,根据这种交换的顺序,依次计算下一个排列。在SJT算法中,每次循环都进行一次满足条件的相邻元素的交换,直到不存在满足条件的可交换的元素,此时说明所有排列的情况均已输出,算法结束。
Ⅲ 分别解释直线生成算法DDA法、中点画线法和Bresenham法的基本原理
DDA称为数值微分画线算法,是直线生成算法中最简单的一种。原理相当简单,就是最直观的根据斜率的偏移程度,决定是以x为步进方向还是以y为步进方向。然后在相应的步进方向上,步进变量每次增加一个像素,而另一个相关坐标变量则为Yk_1=Yk+m(以x为步进变量为例,m为斜率)
假定直线斜率k在0~1之间,当前象素点为(xp,yp),则下一个象素点有两种可选择点P1(xp+1,yp)或P2(xp+1,yp+1)。若P1与P2的中点(xp+1,yp+0.5)称为M,Q为理想直线与x=xp+1垂线的交点。当M在Q的下方时,则取P2应为下一个象素点;当M在Q的上方时,则取P1为下一个象素点。这就是中点画线法的基本原理
Bresenham:过各行、各列像素中心构造一组虚拟网格线,按直线从起点到终点的顺序计算直线各垂直网格线的交点,然后确定该列像素中与此交点最近的像素。该算法的优点在于可以采用增量计算,使得对于每一列,只要检查一个误差项的符号,就可以确定该列所求的像素。
大概就是这样,预知详细,可以参考图形学的书籍
Ⅳ 计算机图形学的题:已知起点A(16,-5)和终点B(-4,8),用DDA法在A和B之间生成一段直线
楼主,你是用对称DDA算法还是简单DDA算法呢?
我用对称DDA算法给你做了下,答案如下,供参考(由于贴上去格式会乱,附了一张图片):
对称DDA算法
1.计算初值△x=-4-16=-20,△y=8-(-5)=13,则n=5,ε=2-n=0.03125
因此,增量分别为:ε*△x=-0.625,ε*△y=0.40625
2.按递推公式循环计算点的坐标,并取整数显示。
i计算坐标显示坐标i计算坐标显示坐标
x1y1xipyipX1y1xipyip
016.5-4.516-4175.2252.4062552
115.875-4.0937515-4184.62.812542
215.25-3.687515-3193.9753.2187533
314.625-3.2812514-2203.353.62533
414-2.87514-2212.7254.0312524
513.375-2.4687513-2222.14.437524
612.125-2.062512-2231.4754.8437514
711.5-1.6562511-1240.855.2505
810.875-1.2510-1250.2255.6562505
910.25-0.8437510026-0.46.062506
109.6-0.43759027-1.0256.46875-16
118.975-0.031258028-1.656.875-16
128.350.3758029-2.2757.28125-27
137.7250.781257030-2.97.6875-27
147.11.18757131-3.5258.09375-38
156.4751.593756132-4.158.5-48
165.85252
3.画一张图XY轴,将(xip,yip)标上去,描绘成一条直线即可。