导航:首页 > 源码编译 > 新闻推荐系统源码

新闻推荐系统源码

发布时间:2024-09-22 15:50:14

① 有哪些比较不错的论坛源代码的网站

探索高质量的论坛源代码:四大专业平台推荐


在构建网站的旅程中,论坛源代码的选择至关重要。这里有四个备受推崇的开源平台,为你的网站开发提供强大支持:



  1. Discuz! - 一站式社区解决方案

    Discuz!,由Comsenz公司精心打造,是php开源论坛领域的领军者。这款专业建站平台将BBS、SNS、门户、群组和开放平台融为一体,为网站提供全面的服务,无论是新手还是经验丰富的开发者,都能从中受益匪浅。



  2. DedeCms - 简单实用的PHP CMS

    织梦CMS,以易用性和功能强大着称,是国内最受欢迎的PHP内容管理系统。DedeCms免费版专为个人站长设计,专注于中小型网站构建,尽管企业用户和教育机构也在广泛使用,但它的核心始终在于简单易用。



  3. 帝国CMS - 稳定可靠的网站管理工具

    帝国CMS以B/S结构和高效性见长,由帝国开发工作组独立开发。从早期的帝国新闻系统到如今的网站管理系统,它的功能革新令人瞩目,为网站搭建和管理带来了前所未有的便捷。



  4. phpCMS - 功能丰富的网站内容管理系统

    phpCMS作为中国领先的网站管理软件,凭借模块化设计和众多功能,如文章管理、下载、图片展示、商城和采集等,为各类规模的网站提供强大且灵活的解决方案,是您打造个性化网站的理想选择。



无论你是寻求简洁易用的个人项目,还是需要强大功能的商业平台,这些论坛源代码平台都能满足你的需求。收藏起来,开始你的网站开发之旅吧!

② 求一份计算机本科的毕业设计,题目只要计算机类的就可以

计算机毕业设计
基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码
基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据
基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件
基于C++的即时通信软件设计 毕业论文+项目源码
基于javaWeb+MySQL的图书管理系统 课程报告+项目源码及数据库文件
基于android Studio+Android SDK的手机通讯录管理软件设计 课程报告+项目源码
基于JSP+MySQL的校园网上订餐系统 毕业论文+项目源码及数据库文件
基于AndroidStudio的花艺分享平台APP设计 报告+源码及APK文件
基于Python的酒店评论情感分析 课程报告+答辩PPT+项目源码
基于QT的教务选课管理系统设计与实现 毕业论文+项目源码
基于Android+Springboot+Mybatis+Mysql的个人生活APP设计 说明书+项目源码
基于Vue.js+Go的Web3D宇宙空间数据可视化系统 设计报告+前后端源码及数据
基于java+android+SQLite的保健型果饮在线销售APP设计 毕业论文+源码数据库及APK文件
基于Vue.js+SpringBoot+MyBatis+MySQL的高校综合资源发布分享社交二手平台 毕业论文+项目源码及数据库文件+演示视频
基于Delphi+MySQL的大学生竞赛发布及组队系统 设计报告+源码数据库及可执行文件+使用说明书
基于Android的名片信息管理系统设计与实现 毕业论文+任务书+外文翻译及原文+演示视频+项目源码
基于Python的电影数据可视化分析系统 设计报告+答辩PPT+项目源码
基于JavaWeb的企业公司管理系统设计与实现 毕业论文+答辩PPT+演示视频+项目源码
高校成绩管理数据库系统的设计与实现 毕业论文+项目源码
基于JavaWeb的家庭食谱管理系统设计与实现 毕业论文+项目源码及数据库文件
基于Python+SQLSERVER的快递业务管理系统的设计与实现 毕业论文+项目源码及数据库文件
基于Python的语音词频提取云平台 设计报告+设计源码
在推荐系统中引入 Serendipity 的算法研究 毕业论文+参考文献+项目源码
基于Html+Python+Django+Sqlite的机票预订系统 毕业论文+项目源码及数据库文件
基于Python的卷积神经网络的猫狗图像识别系统 课程报告+项目源码
基于C++的云安全主动防御系统客户端服务端设计 毕业论文+项目源码
基于JavaSSM的学生成绩管理APP系统设计与实现 毕业论文+答辩PPT+前后台源码及APK文件
基于JavaSwing+MySQL的清朝古代名人数据管理系统设计 毕业论文+任务书+项目源码及数据库文件
基于Python_Django的社会实践活动管理系统设计与实现 毕业论文
基于Servlet WebSocket MySQL实现的网络在线考试系统 毕业论文+项目源码
基于JavaWEB+MySQL的学生成绩综合管理系统 毕业论文+项目源码及数据库文件
基于SpringBoot+Vue和MySQL+Redis的网络课程平台设计与实现 毕业论文+任务书+开题报告+中期报告+初稿+前后台项目源码
基于Java的毕业设计题目收集系统 课程报告+项目源码
基于Java+Python+html的生产者与消费者算法模拟 毕业论文+任务书+项目源码
基于JavaWeb+MySQL的学院党费缴费系统 毕业论文+项目源码及数据库文件
基于Java+MySQL的学生成绩管理系统 毕业论文+任务书+答辩PPT+项目源码及数据库文件
基于Java+MySQL的学生和客户信息管理系统 课程报告+项目源码及数据库文件
基于Java的长整数加减法算法设计 毕业论文+项目源码
基于vue+MySQL的毕业设计网上选题系统 毕业论文+项目源码
基于背景建模和FasterR-CNN的视频前景和目标检测 毕业论文+答辩PPT+项目源码
基于Python的智能视频分析之人数统计的多种实现 毕业论文+答辩PPT+项目源码
基于C#+SQL server的校园卡消费信息管理系统 毕业论文+项目源码及数据库文件

③ 推荐系统论文阅读(十)-基于图神经网络的序列推荐算法

论文:

论文地址: https://arxiv.org/abs/1811.00855

论文题目:《Session-based Recommendation with Graph Neural Networks》SR-GNN

github: https://github.com/CRIPAC-DIG/SR-GNN

基于会话的推荐一般是将序列会话建模,将整个session进行编码,变成一个隐向量,然后利用这个隐向量进行下一个点击预测。但是这种方法没有考虑到item直接复杂的转换(transitions)关系,也就是item之间在点击的session中除了时间顺序外还有复杂的有向图内的节点指向关系,所以之前的方法不足以很好的对点击序列进行建模。

现有基于会话的推荐,方法主要集中于循环神经网络和马尔可夫链,论文提出了现有方法的两个缺点:

1)当一个session中用户的行为数量十分有限时,这些方法难以获取准确的用户行为表示。如当使用RNN模型时,用户行为的表示即最后一个单元的输出,论文认为只有这样并非十分准确。

2)根据先前的工作发现,物品之间的转移模式在会话推荐中是十分重要的特征,但RNN和马尔可夫过程只对相邻的两个物品的 单向转移关系 进行建模,而忽略了会话中其他的物品。

为了克服上述缺陷,本文提出了用图神经网络对方法对用户对session进行建模:

下面具体介绍怎么进行图序列推荐

V = {v1,v2...vm}为全部的item,S = { }为一个session里面按时间顺序的点击物品,论文的目标是预测用户下一个要点击的物品vs,n+1,模型的任务是输出所有item的预测概率,并选择top-k进行推荐。

我们为每一个Session构建一个子图,并获得它对应的出度和入度矩阵。

假设一个点击序列是v1->v2->v4->v3,那么它得到的子图如下图中红色部分所示:

另一个例子,一个点击序列是v1->v2->v3->v2->v4,那么它得到的子图如下:

同时,我们会为每一个子图构建一个出度和入度矩阵,并对出度和入度矩阵的每一行进行归一化,如我们序列v1->v2->v3->v2->v4对应的矩阵如下:

这个矩阵里面的值是怎么计算的呢?下面讲一下:

看左边的出度矩阵,第一行为 0 1 0 0 ,代表着v1->v2,因为v1,只有一个指向的item,所以为1;看第二行,0 0 1/2 1/2,因为v2有指向v3和v4的边,所以进行归一化后每一个值都变成了1/2。入度矩阵的计算方法也是一样的,就不再说了。

本文采用的是GRU单元进行序列建模,将图信息嵌入到神经网络中,让GRU充分学习到item之间的关系,传统的GRU只能学到相邻的两个物品之间的关系,加入图信息后就能学到整个session子图的信息。

计算公式如下:

为了刚好的理解这个计算过程,我们还是使用之前那个例子:v1->v2->v3->v2->v4来一步步分析输入到输出的过程。

(1) 是t时刻,会话s中第i个点击对应的输入, 是n✖️2n的矩阵,也就是会话子图的完整矩阵,而 是其中一行,即物品vi所对应的那行,大小为1✖️2n,n代表序列中不同物品的数量。

如果按照例子来看,如果i取2,那么 为 [0 0 1/2 1/2 1/2 0 1/2 0]

进一步的,可以把 :拆解为[ , ]

(2) 可以理解为序列中第i个物品,在训练过程中对应的嵌入向量,这个向量随着模型的训练不断变化,可以理解为隐藏层的状态,是一个d维向量。

   (3)  H是d*2d的权重向量,也可以看作是一个分块的矩阵,可以理解为H=[Hin|Hout],每一块都是d*d的向量。

那么我们来看看计算过程:

1)[ ..., ] ,结果是d * n的矩阵,转置之后是n*d的矩阵,计作

2) : H相当于[   ],即拆开之后相乘再拼接,因此结果是一个1 * 2d的向量。

上面就是完整的第i个点击的输入的计算过程,可以看到,在进入GRU计算之前,通过跟As,i矩阵相乘,把图信息嵌入到了神经网络中取,加深了神经网络学习到的item之间的交互信息。

此外,就是GRU的计算过程了,跟原始的GRU不一样的地方在于输入从xt变成了嵌入了图信息的as,i。

通样也有更新门和重置门,计算方法跟原始GRU一模一样。

这里的 其实就是相当于原始gru中的 ,只不过在SR-GNN里面,进行一轮运算的时候i是没有变化,相当于每个物品单独进去GRU进行计算,得到自己的向量,也就是说在GRU的计算过程中, 是不断变化的,看一下源码更易于理解:

hidden就是公式里面的 ,在gru的每一个step计算中都会进行更新,这里我有个疑问,如果所有item的hidden都更新的话,那么应该是整个序列中所有的item并行进入GRU中进行计算,每一个step都得到自己的vector,当每个item的vector更新后,下一个step就重新根据新的 计算 ,接着计算下一个step。

计算过程大概就是下面这样:

这里有四个GRU并行计算,没次更新自己的hidden状态,输入则考虑所有的hidden和图信息。

从上面的图看来,每一个item都要进行T个step得到自己的item-vec,所以经过T个step后,我们就得到了序列中所有item的向量,即:

图中用蓝色框框画出来的向量,有了这些向量后,我们怎么得到预测结果呢?这就引入了下一个问题。

观察上面的模型结构,我们看到attention,没错,我们认为一个session中的这些item-vec并不都对预测结果产生影响,有些item对结果影响很大,有些影响很小,所以我们进行了加权求和。同时,论文认为session对最后一个item-vec,s1=vn是重要的,所以单独拿出来:

公式(6)就是简单的attention操作,其实从公式上来看就是计算每个vi跟最后一个向量vn的权值,然后进行加权求和。

在最后的输出层,使用sh和每个物品的embedding进行内积计算,这里vi应该是item的embedding层出来的向量,而不是后面一直更新的hidden:

最后通过一个softmax得到最终每个物品的点击概率:

损失函数为交叉熵损失函数:

从数据上来看,SR-GNN超过了经典的GRU4REC,这也说明了图信息的嵌入能带来更好的推荐效果。

本论文很巧妙的将图信息嵌入的神经网络中,更高地让GRU学习到每个item之间的关系,不再局限于相邻的物品之间进行学习。近年来,图神经网络的思想和方法屡屡被用在推荐系统中,学好图神经网络应该是推荐系统的下一个热潮。

④ 在微信公众号上做一个分销系统,大概要花多少钱

在公众号上做分销系统主要有三种方式,我分别列一下每种方式的大概费用:
1、自己组技术团队自己开发,需要的人员有产品经理、框架工程师、JAVA、PHP、前端、后端、测试工程师,开发周期在2-3个月。人员成本10-15万,后期维护成本没算。(不推荐)
2、购买别人的分销系统源码,用自己的服务器,找个技术人员专职维护。源码费用一般3-5万,服务器一年3000,维护成本每月6000。(不推荐)
3、使用第三方分销系统,购买第三方分销系统账号,每年约5000元,不用担心技术维护、不用建服务器,拿过来就可以使用,还可以根据自己的搭建要求设计店铺和公众号。(推荐)
三级分销系统的功能包括:
一二三级分销一键开启、分销商等级、会员等级、单商品佣金自定义、拼团、秒杀、预约、裂变红包、优惠券、区域代理、股东合伙人、砍价、抽奖、海报营销、文章营销、视频直播电商、积分抵扣、满减优惠、全返、赠品、立减、充值优惠等。如果你正在找这样的分销系统点我头像即可。

阅读全文

与新闻推荐系统源码相关的资料

热点内容
夜蒲聚会app是什么软件 浏览:639
任天堂如何区分服务器 浏览:818
云服务器的运用前景 浏览:547
解压视频素材哪里有 浏览:255
小米5android7 浏览:842
极品飞车10修改直接解压 浏览:640
简易算法怎么用 浏览:497
压缩比101用什么油 浏览:562
买白银下什么APP 浏览:842
服务器操作台如何操作 浏览:245
可编程安全继电器 浏览:989
兔牙喵喵喵解压文件密码 浏览:277
磁盘新建文件夹未响应 浏览:997
有什么录音app带混响 浏览:941
英语精读pdf 浏览:207
戒烟之后排解压力 浏览:908
视频网站如何选服务器 浏览:257
单片机中ramrom是什么颜色 浏览:40
dev编译完不显示控制台窗口 浏览:595
程序员自学有希望吗 浏览:528