导航:首页 > 源码编译 > 逻辑回归算法不收敛

逻辑回归算法不收敛

发布时间:2024-09-29 21:26:37

⑴ 逻辑回归算法原理是什么

逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,测试验证这个求解的模型的好坏。

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)。回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率。

Logistic回归模型的适用条件

1、因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。但是需要注意,重复计数现象指标不适用于Logistic回归。

2、残差和因变量都要服从二项分布。二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。

3、自变量和Logistic概率是线性关系。

以上内容参考:网络-logistic回归

⑵ 逻辑回归解决什么问题

问题一:逻辑回归和SVM的区别是什么?各适用于解决什么问题 两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss.这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重.SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器.而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重.两者的根本目的都是一样的.此外,根据需要,两个方法都可以增加不同的正则化项,如l1,l2等等.所以在很多实验中,两种算法的结果是很接近的.
但是逻辑回归相对来说模型更简单,好理解,实现起来,特别是大规模线性分类时比较方便.而SVM的理解和优化相对来说复杂一些.但是SVM的理论基础更加牢固,有一套结构化风险最小化的理论基础,虽然一般使用的人不太会去关注.还有很重要的一点,SVM转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算
svm 更多的属于非参数模型,而logistic regression 是参数模型,本质不同.其区别就可以参考参数模型和非参模型的区别就好了.
logic 能做的 svm能做,但可能在准确率上有问题,svm能做的logic有的做不了

问题二:逻辑回归适用于什么样的分类问题 两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss.这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重.SVM的处理方法是只考虑

问题三:哪些问题可以使用logistic回归分析 Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。

问题四:逻辑回归 和 朴素贝叶斯 两者间的区别 区别如下:
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。
朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。
解决这个问题的方法一般是建立一个属性模型,对于不相互独立的属性,把他们单独处理。例如中文文本分类识别的时候,我们可以建立一个字典来处理一些词组。如果发现特定的问题中存在特殊的模式属性,那么就单独处理。

问题五:机器学习中的逻辑回归到底是回归还是分类 逻辑回归:y=sigmoid(w'x)
线性回归:y=w'x
也就是逻辑回归比线性回归多了一个sigmoid函数,sigmoid(x)=1/(1+exp(-x)),其实就是对x进行归一化操作,使得sigmoid(x)位于0~1逻辑回归通常用于二分类模型,目标函数是二类交叉熵,y的值表示属于第1类的概率,用户可以自己设置一个分类阈值。
线性回归用来拟合数据,目标函数是平法和误差

问题六:逻辑回归,如何处理多元共线性问题 将所有回归中要用到的变量依次作为因变量、其他变量作为自变量进行回归分析,可以得到各个变量的膨胀系数VIF以及容忍度tolerance,如果容忍度越接近0,则共线性问题越严重,而VIF是越大共线性越严重,通常VIF小于5可以认为共线性不严重,宽泛一点的标准小于10即可。

问题七:机器学习之逻辑回归算法的一些疑问 第一, 参数为theta, 观察到x向量,判断为y标签的概率。
第二, h(x)为sigmoid function, 用来将 (-inf,inf)映射至(0,1]作为概率分布
第三 , 虽然不知道你在说什么,但是y是标签,所以在这里只有二值,1或-1

问题八:多重线性回归,logistic回归,cox回归各自解决什么问题 影响因素研究的

问题九:逻辑回归和神经网络之间有什么关系 神经网络的设计要用到遗传算法,遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。
1.遗传算法在网络学习中的应用
在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用
(1)学习规则的优化
用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。
(2)网络权系数的优化
用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。
2.遗传算法在网络设计中的应用
用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异操作得出最优结构。编码方法主要有下列3种:
(1)直接编码法
这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。
(2)参数化编码法
参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。
(3)繁衍生长法
这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。
3.遗传算法在网络分析中的应用
遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。
遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等。

问题十:逻辑回归模型的回归因子怎么得到 线性回归,是统计学领域的方法,用的时候需要关注假设条件是否满足、模型拟合是否达标,参数是否显着,自变量之间是否存在多重共线性等等问题因为统计学是一个过程导向的,需要每一步都要满足相应的数学逻辑。
下面讲讲我对线性回归的体会(只讲体会,原理的内容就不多说了,因为不难,而且网上相应资料很多!~):
1、linear regression 是最原始的回归,用来做数值类型的回归(有点绕,是为了区别“分类”),比如你可以利用它构建模型,输入你现在的体重、每天卡路里的摄入量、每天运动量等,预测你一个月的体重会是多少,从模型的summary中,查看模型对数据解释了多少,哪些自变量在影响你体重变化中更重要(事先对变量做了standardize),还可以看出在其它自变量不变的适合,其中一个自变量每变化1%,你的体重会变化多少(事先对自变量没做standardize)。 当问题是线性,或者偏向线性,假设条件又都满足(很难),又做好了数据预处理(工作量可能很大)时,线性回归算法的表现是挺不错的,而且在对模型很容易解释!但是,当问题不是线性问题时,普通线性回归算法就表现不太好了。
2、曲线回归,我更喜欢称之为“多项式回归”,是为了让弥补普通线性回归不擅长处理非线性问题而设计的,它给自变量加上一些适合当前问题的非线性特征(比如指数等等),让模型可以更好地拟合当前非线性问题。虽然有一些方法来帮助判断如何选择非线性特征,可以保证模型更优秀。但动手实践过的人,都知道,那有点纸上谈兵了,效果不好,而且有些非线性很难简单地表示出来!!
3、logistic regression,我感觉它应该属于机器学习领域的方法了(当你不去纠结那些繁琐的假设条件时),它主要是用来分析当因变量是分类变量的情况,且由于本身带有一丝的非线性特征,所以在处理非线性问题时,模型表现的也挺好(要用好它,需要做好数据预处理工作,把数据打磨得十分“漂亮”)。企业十分喜欢用它来做数据挖掘,原因是算法本身表现良好,而且对模型的输出结果容易解释(领导们都听得懂),不像其它高端的机器学习算法,比如Multiboost、SVM等,虽然很善于处理非线性问题,对数据质量的要求也相对较低,但它们总是在黑盒子里工作,外行人根本看不懂它是怎么运行的,它的输出结果应该怎么解释!(好吧,其实内行人也很难看懂!- - )

⑶ 机器学习常见算法优缺点之逻辑回归

我们在学习机器学习的时候自然会涉及到很多算法,而这些算法都是能够帮助我们处理更多的问题。其中,逻辑回归是机器学习中一个常见的算法,在这篇文章中我们给大家介绍一下关于逻辑回归的优缺点,大家有兴趣的一定要好好阅读哟。

首先我们给大家介绍一下逻辑回归的相关知识,逻辑回归的英文就是Logistic Regression。一般来说,逻辑回归属于判别式模型,同时伴有很多模型正则化的方法,具体有L0, L1,L2,etc等等,当然我们没有必要像在用朴素贝叶斯那样担心我的特征是否相关。这种算法与决策树、SVM相比,我们还会得到一个不错的概率解释,当然,我们还可以轻松地利用新数据来更新模型,比如说使用在线梯度下降算法-online gradient descent。如果我们需要一个概率架构,比如说,简单地调节分类阈值,指明不确定性,或者是要获得置信区间,或者我们希望以后将更多的训练数据快速整合到模型中去,我们可以使用这个这个算法。

那么逻辑回归算法的优点是什么呢?其实逻辑回归的优点具体体现在5点,第一就是实现简单,广泛的应用于工业问题上。第二就是分类时计算量非常小,速度很快,存储资源低。第三就是便利的观测样本概率分数。第四就是对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题。第五就是计算代价不高,易于理解和实现。
当然,逻辑回归的缺点也是十分明显的,同样,具体体现在五点,第一就是当特征空间很大时,逻辑回归的性能不是很好。第二就是容易欠拟合,一般准确度不太高。第三就是不能很好地处理大量多类特征或变量。第四个缺点就是只能处理两分类问题,且必须线性可分。第五个缺点就是对于非线性特征,需要进行转换。

那么逻辑回归应用领域都有哪些呢?逻辑回归的应用领域还是比较广泛的,比如说逻辑回归可以用于二分类领域,可以得出概率值,适用于根据分类概率排名的领域,如搜索排名等、逻辑回归的扩展softmax可以应用于多分类领域,如手写字识别等。当然,在信用评估也有逻辑回归的使用,同时逻辑回归可以测量市场营销的成功度。当然,也可以预测某个产品的收益。最后一个功能比较有意思,那就是可以预定特定的某天是否会发生地震。

我们在这篇文章中给大家介绍了关于机器学习中逻辑回归算法的相关知识,从中我们具体为大家介绍了逻辑回归算法的优缺点以及应用领域。相信大家能够通过这篇文章能够更好的理解逻辑回归算法。

⑷ logistic回归与生存分析比较

logistic回归与生存分析比较的方法如下:

1、目的和应用场景:Logistic回归的主要目的是预测一个二元结果变量,即事件是否发生。它常用于分类问题,如信用评分、疾病诊断等。而生存分析则主要用于研究时间至事件发生的问题,如患者的生存时间、产品的寿命等。这两种方法的应用场景和目的有所不同。

2、模型假设和参数解释:Logistic回归假设事件发生的概率为P,不发生的概率为1-P,且各数据点之间是独立的。而生存分析则假设每个个体都有可能发生事件,但发生时间的分布是未知的,通常用指数分布、威布尔分布等来描述。

3、Logistic回归模型也存在一些局限性。它对数据的质量和特征的选择非常敏感,容易受到异常值和噪声的影响。它假设数据服从正态分布,这在实际应用中可能不成立。当特征维度很高时,Logistic回归模型可能会出现过拟合问题。Logistic回归是一种非常实用的分类方法。

阅读全文

与逻辑回归算法不收敛相关的资料

热点内容
linux同步脚本 浏览:664
福建新唐集成硬件加密 浏览:943
空调压缩机被破坏 浏览:105
现在学php怎么样 浏览:90
linuxchttp下载 浏览:770
大数据虚拟机云服务器 浏览:57
java与嵌入式开发 浏览:20
minios如何搭建文件服务器 浏览:1000
华为为啥有些压缩包解压不开 浏览:563
oracle可以编译存储吗 浏览:475
机械男和女程序员创业 浏览:799
自己怎么制作软件app 浏览:214
javajson字符串转java对象 浏览:230
必修一数学PDF 浏览:775
javascriptphpjsp 浏览:811
深圳一程序员退房完整版 浏览:294
后台管理app哪个好 浏览:766
加密锁无模块什么意思 浏览:22
加密国度英文 浏览:20
科沃斯用了app怎么使用按键 浏览:663