㈠ 决策树分类算法有哪些
问题一:决策树算法是按什么来进行分类的 决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。
决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除。
问题二:数据挖掘分类方法决策树可以分多类么 数据挖掘,也称之为数据库中知识发现是一个可以从海量数据中智能地和自动地抽取一些有用的、可信的、有效的和可以理解的模式的过程.分类是数据挖掘的重要内容之一.目前,分类已广泛应用于许多领域,如医疗诊断、天气预测、信用证实、顾客区分、欺诈甄别. 现己有多种分类的方法,其中决策树分类法在海量数据环境中应用最为广泛.其原因如下:
1、决策树分类的直观的表示方法较容易转化为标准的数据库查询
2、决策树分类归纳的方法行之有效,尤其适合大型数据集.
3、决策树在分类过程中,除了数据集中已包括的信息外,不再需要额外的信息.
4、决策树分类模型的精确度较高. 该文首先研究了评估分类模型的方法.在此基础上着重研究了决策树分类方法,并对决策树算法的可伸缩性问题进行了具体分析,最后给出了基于OLE DB for DM开发决策树分类预测应用程序.
问题三:基于规则的分类器(比如用RIPPER算法)和决策树的区别在哪,使用场景有什么不同? 决策树实际上是规则分类器。基于转换的错误驱动学习方法的提出者曾经在论文中论证过这个问题,他的学习方法是规则学习器,但和决策树等价。
问题四:决策树的优缺点是什么啊 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。
决策树的优缺点:
优点:
1) 可以生成可以理解的规则。
2) 计算量相对来说不是很大。
3) 可以处理连续和种类字穿。
4) 决策树可以清晰的显示哪些字段比较重要
缺点:
1) 对连续性的字段比较难预测。
2) 对有时间顺序的数据,需要很多预处理的工作。
3) 当类别太多时,错误可能就会增加的比较快。
4) 一般的算法分类的时候,只是根据一个字段来分类。
问题五:c4.5决策树算法怎么得到分类结果 决策树主要有ID3,C4.5,CART等形式。ID3选取信息增益的属性递归进行分类,C4.5改进为使用信息增益率来选取分类属性。CART是Classfication and Regression Tree的缩写。表明CART不仅可以进行分类,也可以进行回归。
问题六:决策树分类算法的适用领域,不要概括成经济、社会、医疗领域,具体到实际问题。且用什么软件实现较方便。 决策树算法主要用于数据挖掘和机器学习,数据挖掘就是从海量数据中找出规律。一个有名的例子就是啤酒和尿布的例子,这是数据挖掘的典型。决策树算法包括ID3,C4.5,CART等,各种算法都是利用海量的数据来生成决策树的,决策树能帮助人或者机器做出决策。最简单的一个例子就是你去看病,根据决策树,医生能够判断这是什么病。软件的话用VISUAL STUDIO就可以,C语言,C++,C#,java都可以。
问题七:贝叶斯网络和贝叶斯分类算法的区别 贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Na?ve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。
由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(tree augmented Bayes network)算法。
㈡ 用于数据挖掘的分类算法有哪些,各有何优劣
1、朴素贝叶斯(Naive Bayes, NB)
简单,就像做一些数数的工作。
如果条件独立假设成立的话,NB将比鉴别模型(如Logistic回归)收敛的更快,所以你只需要少量的训练数据。
如果你想做类似半监督学习,或者是既要模型简单又要性能好,NB值得尝试.
2.Logistic回归(Logistic Regression, LR)
LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。
如果你想要一些概率信息(如,为了更容易的调整分类阈值,得到分类的不确定性,得到置信区间),或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的.
3.决策树(Decision Tree, DT)
DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题(例如,DT可以轻松的处理这种情况:属于A类的样本的特征x取值往往非常小或者非常大,而属于B类的样本的特征x取值在中间范围)。
DT的主要缺点是容易过拟合,这也正是随机森林(Random Forest, RF)(或者Boosted树)等集成学习算法被提出来的原因。
此外,RF在很多分类问题中经常表现得最好,且速度快可扩展,也不像SVM那样需要调整大量的参数,所以最近RF是一个非常流行的算法.
4.支持向量机(Support Vector Machine, SVM)
很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。
SVM在维数通常很高的文本分类中非常的流行。由于较大的内存需求和繁琐的调参,我认为RF已经开始威胁其地位了.
㈢ 数据挖掘有哪几种方法
1、神经元网络办法
神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。
2、遗传算法
遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。
3、决策树算法办法
决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。
粗集基础理论是一种科学研究不精准、不确定性专业知识的数学工具。粗集办法几个优势:不必得出附加信息;简单化键入信息的表述室内空间;优化算法简易,便于实际操作。粗集处理的方针是附近二维关系表的信息表。
4、遮盖正例抵触典例办法
它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。
5、数据剖析办法
在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。
6、含糊集办法
即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。
关于大数据在市场营销方面的优势有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈣ 数据挖掘的十大经典算法,总算是讲清楚了,想提升自己的赶快收藏
一个优秀的数据分析师,除了要掌握基本的统计学、数据分析思维、数据分析工具之外,还需要掌握基本的数据挖掘思想,帮助我们挖掘出有价值的数据,这也是数据分析专家和一般数据分析师的差距所在。
国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。今天主要分享其中10种经典算法,内容较干,建议收藏备用学习。
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效(相对的CART算法只需要扫描两次数据集,以下仅为决策树优缺点)。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。
3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。
4. The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5. 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。
6. PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7. AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8. kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9. Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
10. CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法(二元切分法);第二个想法是用验证数据进行剪枝(预剪枝、后剪枝)。在回归树的基础上的模型树构建难度可能增加了,但同时其分类效果也有提升。
参考书籍:《机器学习实战》
㈤ 数据挖掘中的经典算法
大家都知道,数据挖掘中有很多的算法,不同的算法有着不同的优势,它们在数据挖掘领域都产生了极为深远的影响。那么大家知道不知知道数据挖掘中的经典算法都有哪些呢?在这篇文章中我们就给大家介绍数据挖掘中三个经典的算法,希望这篇文章能够更好的帮助大家。
1.K-Means算法
K-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k大于n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。这种算法在数据挖掘中是十分常见的算法。
2.支持向量机
而Support vector machines就是支持向量机,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,这种方法广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。这些优点也就成就了这种算法。
3.C4.5算法
然后我们给大家说一下C4.5算法,C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并对ID3算法进行了改进,这种改进具体体现在四个方面,第一就是在树构造过程中进行剪枝,第二就是能够完成对连续属性的离散化处理,第三就是用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足,第四就是能够对不完整数据进行处理。那么这种算法的优点是什么呢?优点就是产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
相信大家看了这篇文章以后对The k-means algorithm算法、Support vector machines、C4.5算法有了比较是深刻的了解,其实这三种算法那都是十分重要的算法,能够帮助数据挖掘解决更多的问题。大家在学习数据挖掘的时候一定要注意好这些问题。
㈥ 数据挖掘中的预测算法有哪些
1、决策树方法。其核心思想是选取具有最高信息增益的属性,即相对于信息熵最高的属性,可参考维基网络中二者的计算公式作为当前节点的分裂属性。
2、人工神经网络。人工神经网络,是对人脑若干基本特性的抽象。它由大量神经元通过丰富的连接构成多层网络,用以模拟人脑功能。
3、支持向量机。支持向量机,是20世纪90年代Vapnik等人根据统计学习理论中结构风险最小化原则提出的一种机器学习方法。
4、正则化方法。正则化方法用模型系数的绝对值函数作为惩罚来压缩模型系数,使绝对值较小
㈦ 关于数据挖掘中决策树的知识
在数据挖掘中,有很多的算法是需要我们去学习的,比如决策树算法。在数据挖掘中,决策树能够帮助我们解决更多的问题。当然,关于决策树的概念是有很多的,所以说我们需要多多学习多多总结,这样才能够学会并且学会数据挖掘的知识,在这篇文章中我们就重点为大家介绍一下关于决策树的相关知识。
1.决策树的算法
决策树的算法是以树状结构表示数据分类的结果。一般情况,一棵决策树包含一个根节点、若干个内部结点和若干个叶结点。而叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集,从根结点到每个叶结点的路径对应了一个判定测试序列。决策树学习的目的就是为了产生一棵泛化能力强,即能处理未见示例能力强的决策树。这些就是决策树算法的结构。
2.决策树的原理
一般来说,决策树归纳的基本算法是贪心算法,自顶向下以递归方式构造决策树。而贪心算法在每一步选择中都采取在当前状态下最优的选择。在决策树生成过程中,划分选择即属性选择度量是关键。通过属性选择度量,选择出最好的将样本分类的属性。这样就能够方便数据属性的划分,然后,下一步是树的剪枝。在决策树学习中,为了尽可能正确分类训练样本,结点划分过程将不断重复,这样才能够使用决策树解决很多的问题。而分类是数据挖掘中的一种应用方法,而决策树则是一种典型的普遍使用的分类方法,并且决策树技术早已被证明是利用计算机模拟人决策的有效方法。
3.决策树的现状
近年来随着信息技术、计算机科学的迅速发展,决策树作为重要方法之一,越来越受到人们的关注。而其在人工智能方面的潜力以及与越来越多新技术的结合,由此可见,决策树在数据挖掘乃至数据分析中还是有很长的使用时间,这就是决策树至今经典的原因。
在这篇文章中我们给大家介绍了关于数据挖掘中决策树的知识,当大家学习了决策树的概念,决策树的结构以决策树的原理,就能够掌握决策树的基础知识。不过要想学习数据挖掘,还是要学习更多的知识,希望这篇文章能够帮助到大家。