导航:首页 > 源码编译 > 分类算法源码

分类算法源码

发布时间:2024-10-26 03:06:30

㈠ 求KNN文本分类算法java实现源代码【散分了!!!!】

#include <iostream>
#include <cmath>
#include <fstream>
using namespace std;
#define NATTRS 5 //number of attributes
#define MAXSZ 1700 //max size of training set
#define MAXVALUE 10000.0 //the biggest attribute's value is below 10000(int)
#define K 5
struct vector {
double attributes[NATTRS];
double classlabel;
};
struct item {
double distance;
double classlabel;
};
struct vector trSet[MAXSZ];//global variable,the training set
struct item knn[K];//global variable,the k-neareast-neighbour set
int curTSize = 0; //current size of the training set
int AddtoTSet(struct vector v)
{
if(curTSize>=MAXSZ) {
cout<<endl<<"The training set has "<<MAXSZ<<" examples!"<<endl<<endl;
return 0;
}
trSet[curTSize] = v;
curTSize++;
return 1;
}
double Distance(struct vector v1,struct vector v2)
{
double d = 0.0;
double tem = 0.0;
for(int i = 0;i < NATTRS;i++)
tem += (v1.attributes[i]-v2.attributes[i])*(v1.attributes[i]-v2.attributes[i]);
d = sqrt(tem);
return d;
}
int max(struct item knn[]) //return the no. of the item which has biggest distance(
//should be replaced)
{
int maxNo = 0;
if(K > 1)
for(int i = 1;i < K;i++)
if(knn[i].distance>knn[maxNo].distance)
maxNo = i;
return maxNo;
}double Classify(struct vector v)//decide which class label will be assigned to
//a given input vetor with the knn method
{
double dd = 0;
int maxn = 0;
int freq[K];
double mfreqC = 0;//the class label appears most frequently
int i;
for(i = 0;i < K;i++)
knn[i].distance = MAXVALUE;
for(i = 0;i < curTSize;i++)
{
dd = Distance(trSet[i],v);
maxn = max(knn);//for every new state of the training set should update maxn
if(dd < knn[maxn].distance) {
knn[maxn].distance = dd;
knn[maxn].classlabel = trSet[i].classlabel;
}
}
for(i = 0;i < K;i++)//freq[i] represents knn[i].classlabel appears how many times
freq[i] = 1;
for(i = 0;i < K;i++)
for(int j = 0;j < K;j++)
if((i!=j)&&(knn[i].classlabel == knn[j].classlabel))
freq[i]+=1;
int mfreq = 1;
mfreqC = knn[0].classlabel;
for(i = 0;i < K;i++)
if(freq[i] > mfreq) {
mfreq = freq[i];//mfreq represents the most frepuences
mfreqC = knn[i].classlabel; //mfreqNo is the item no. with the most frequent
//classlabel
}
return mfreqC;
}
void main()
{ double classlabel;
double c;
double n;
struct vector trExmp;
int i;
ifstream filein("G:\\data\\for knn\\data.txt");
if(filein.fail()){cout<<"Can't open data.txt"<<endl; return;}
while(!filein.eof()) {
filein>>c;
trExmp.classlabel = c;
cout<<trExmp.classlabel<<" "; for(int i = 0;i < NATTRS;i++) {
filein>>n;
trExmp.attributes[i] = n;
cout<<trExmp.attributes[i]<<" ";
} cout<<endl;
if(!AddtoTSet(trExmp))
break;
}filein.close();struct vector testv={{142,188,11,1159,0.5513196},17};
classlabel = Classify(testv);
cout<<"The classlable of the testv is: ";
cout<<classlabel<<endl;
for(i = 0;i < K;i++)
cout<<knn[i].distance<<"\t"<<knn[i].classlabel<<endl;
//cout<<max(knn);
}

㈡ 如何用OpenCV训练自己的分类器

目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。
分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。
分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。 为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。
目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。
"boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。
根据上面的分析,目标检测分为三个步骤:
1、 样本的创建
2、 训练分类器
3、 利用训练好的分类器进行目标检测。

阅读全文

与分类算法源码相关的资料

热点内容
外国超级解压实验 浏览:61
pdf阅读器官方免费下载 浏览:44
禁止的命令 浏览:963
java设置button的大小设置 浏览:451
ios程序员提升方向 浏览:528
源码封库时引用的库怎么处理 浏览:524
鲨鱼源码最新版 浏览:677
节点是服务器地址吗 浏览:630
服务器为什么不能搬走 浏览:315
三年无工作经验空窗期的程序员 浏览:561
来球网app怎么样 浏览:302
51单片机哈佛 浏览:571
无法下载华为移动服务器地址 浏览:679
phplinux重启命令 浏览:110
厦门软二程序员 浏览:580
tv共享文件夹 浏览:621
bec词汇词根pdf 浏览:65
服务器如何开启上网吗 浏览:159
永久修改linuxip 浏览:748
每个文件单独压缩 浏览:470