导航:首页 > 源码编译 > 图像处理算法源码

图像处理算法源码

发布时间:2024-11-04 22:51:01

1. 数字图像处理及算术编码(或DCT压缩编码)仿真实现

这些都是很简单的功能,为什么不自己编程试试呢?
风之风信子会帮你解决这一次的问题,谁帮你引导以后的路呢?

%Date: 2011年9月26日20:25:53
%Function: 3*3均值滤波平滑
%Written by 风之风信子

clc;
clear;
clear all;
I=imread('peppers.png');
%这里改成你的路径,
%切记图像不能放在汉字文件夹
%路径例子:d:\matlab\moon_light_shadow.jpg
J=rgb2gray(I);
%彩色变黑白
imshow(J);
h=(1/9)*[1 1 1;1 1 1;1 1 1];
I2=imfilter(J,h);
%滤波(就是求平均的过程)
figure,imshow(I2);

%%%%直方图均衡化 matlab实现:
clc;
clear all;
I = imread('d:\Image\hill_histogram.jpg');
I=rgb2gray(I);
J = histeq(I);
subplot(221);imshow(I);
subplot(222); imshow(J);
subplot(223); imhist(I,64)
subplot(224); imhist(J,64)

%%%%DCT编码 matlab实现:

R=imread('d:\Image\car.jpg'); %装入原始图像
I=rgb2gray(R); %转换成灰度图像
J=dct2(I); %
colormap(jet(256));
J(abs(J)<100)=0; %将DCT变换值小于10的元素设为0
K=idct2(J);
figure; subplot(121);imshow(I,[0,255]);
title(' original'); %显示原图像
subplot(122);imshow(K,[0,255]);
title('IDCT ');%显示反变

2. MATLAB--数字图像处理 Otsu算法(双阈值)

在数字图像处理中,Otsu算法是一种着名的双阈值分割技术。它的核心思想是通过优化灰度级像素的统计特性来找到最佳的两个阈值,从而实现图像的二值化。具体步骤如下:

首先,算法通过计算每个像素灰度值与其均值u的方差,构建一个关于灰度级的累计分布函数(CDF),并定义一个函数g,其中w0、w1和w2分别对应不同灰度级的概率权重,(u0-u)^2、(u1-u)^2和(w2-u)^2分别代表每个灰度级与均值的方差。目标是找到两个阈值u0和u1,使得g的值最大,这样可以确保分割后的图像具有最佳的类间方差和类内方差。

接着,通过求导并令其等于零,可以找到两个局部最优的阈值。这些阈值将图像像素划分为两个类别,通常一个类别代表前景,另一个代表背景。

一旦阈值确定,就可以使用它们将图像分割成两个部分。这个过程通常在主函数中调用,调用时传入计算出的阈值,图像数据和可能的额外参数。

总的来说,Otsu算法是一种简单而有效的图像二值化方法,它在不需要预先设定阈值的情况下,自动找到最佳的分割点,从而提高图像处理的精度。

阅读全文

与图像处理算法源码相关的资料

热点内容
如何截获手机app连接的ip 浏览:330
冰箱压缩机是否需要电容 浏览:344
python列表每一行数据求和 浏览:274
自己有一台服务器可以玩什么 浏览:656
社会学波普诺pdf 浏览:584
解压做食物的小视频 浏览:758
pdf怎么单独设置文件夹 浏览:474
业务逻辑程序员 浏览:659
addto新建文件夹什么意思 浏览:160
有服务器地址怎么安装软件 浏览:659
安卓如何完全清除数据 浏览:690
安卓安卓证书怎么信任 浏览:53
服务器被攻击如何解决 浏览:221
学霸变成程序员 浏览:881
c语言编译错误fatalerror 浏览:441
ipv4内部服务器地址怎么分配 浏览:463
java线程安全的方法 浏览:951
重复命令画梯形 浏览:164
在疫情就是命令 浏览:328
自己搭建一个什么服务器好玩 浏览:253