导航:首页 > 源码编译 > linuxinit源码

linuxinit源码

发布时间:2022-01-15 11:32:28

linux /sbin/init程序的代码在busybox的什么地方

BusyBox 命令中支持的选项 BusyBox 中的命令并不支持所有可用选项,不过这些命令都包含了常用的选项。如果我们需要知道一个命令可以支持哪些选项,可以使用 --help 选项来调用这个命令,如清单 12 所示。

清单 12. 使用 --help 选项调用命令
$ ./busybox wc --help
BusyBox v1.1.1 (2006.04.09-15:27+0000) multi-call binary
Usage: wc [OPTION]... [FILE]...
Print line, word, and byte counts for each FILE, and a total line if
more than one FILE is specified. With no FILE, read standard input.
Options:
-c print the byte counts
-l print the newline counts
-L print the length of the longest line
-w print the word counts
$
这些特定的数据只有在启用了 CONFIG_FEATURE_VERBOSE_USAGE 选项时才可以使用。如果没有这个选项,我们就无法获得这些详细数据,但是这样可以节省大约 13 KB 的空间。

向 BusyBox 中添加新命令
向 BusyBox 添加一个新命令非常简单,这是因为它具有良好定义的体系结构。第一个步骤是为新命令的源代码选择一个位置。我们要根据命令的类型(网络,shell 等)来选择位置,并与其他命令保持一致。这一点非常重要,因为这个新命令最终会在 menuconfig 的配置菜单中出现(在下面的例子中,是 Miscellaneous Utilities 菜单)。
对于这个例子来说,我将这个新命令称为 newcmd,并将它放到了 ./miscutils 目录中。这个新命令的源代码如清单 13 所示。
清单 13. 集成到 BusyBox 中的新命令的源代码
#include "busybox.h"
int newcmd_main( int argc, char *argv[] )
{

㈡ 在源码中init函数最后的运行/sbin/init从哪里来的

呵呵,到你看的这里的时候,
kernel 已经启动完成了,
/sbin/init 是应用层的程序,
和 kernel 不是一起的。
kernel 启动完成后,会主动将控制权移交给 /sbin/init,继续完成应用层的初始化,这也就是你看到的这几行代码。
这个程序不是 kernel 的一部分,任何人用任何语言都可以编写这个 /sbin/init 程序,你自己也可以编~
不过虽说是如此,System V 对于 init 程序还是有个规范的,man init 就可以看到关于它所应该实现的功能的描述。
在我的 Linux(FC3) 上,/sbin/init 程序是 rpm 包 SysVinit-2.85-34 提供的。
事实上,根据我的观察,各个发行版自己都改过 init,这一点可以从启动时屏幕上打印出的信息中看到。
[ 关闭窗口 ]

㈢ linux 内核启动完如何到init

Linux内核为不同驱动的加载顺序对应不同的优先级,定义了一些宏:
include\linux\init.h

#define pure_initcall(fn) __define_initcall("0",fn,1)

#define core_initcall(fn) __define_initcall("1",fn,1)
#define core_initcall_sync(fn) __define_initcall("1s",fn,1s)
#define postcore_initcall(fn) __define_initcall("2",fn,2)
#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)
#define arch_initcall(fn) __define_initcall("3",fn,3)
#define arch_initcall_sync(fn) __define_initcall("3s",fn,3s)
#define subsys_initcall(fn) __define_initcall("4",fn,4)
#define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)
#define fs_initcall(fn) __define_initcall("5",fn,5)
#define fs_initcall_sync(fn) __define_initcall("5s",fn,5s)
#define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)
#define device_initcall(fn) __define_initcall("6",fn,6)
#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)
#define late_initcall(fn) __define_initcall("7",fn,7)
#define late_initcall_sync(fn) __define_initcall("7s",fn,7s)

#define __initcall(fn) device_initcall(fn)

把自己的驱动的函数名用这些宏去定义之后,
就会对应不同的加载时候的优先级。

其中,我们写驱动中所用到的mole_init对应的是
#define mole_init(x) __initcall(x);

#define __initcall(fn) device_initcall(fn)
所以,驱动对应的加载的优先级为6

在上面的不同的优先级中,
数字越小,优先级越高。
同一等级的优先级的驱动,加载顺序是链接过程决定的,结果是不确定的,我们无法去手动设置谁先谁后。
不同等级的驱动加载的顺序是先优先级高,后优先级低,这是可以确定的。

所以,像我们之前在驱动中用:
mole_init(i2c_dev_init);
mole_init(as352x_afe_init);
mole_init(as352x_afe_i2c_init);

mole_init(enc28j60_init);

所以,大家都是同一个优先级去初始化,
最后这些驱动加载的顺序,可以查看在根目录下,
生成的system.map:

。。。
c00197d8 t __initcall_alignment_init5
。。。。。
c00197f4 t __initcall_default_rootfsrootfs
c00197f8 t __initcall_timer_init_sysfs6
c00197fc t __initcall_clock_dev_init6
。。。
c00198d8 t __initcall_loop_init6
c00198dc t __initcall_net_olddevs_init6
c00198e0 t __initcall_loopback_init6
c00198e4 t __initcall_enc28j60_init6
。。。
c0019900 t __initcall_as352x_spi_init6
c0019904 t __initcall_spidev_init6
。。。
c0019920 t __initcall_i2c_dev_init6
c0019924 t __initcall_as352x_afe_i2c_init6
c0019928 t __initcall_as352x_afe_init6
。。。
c0019970 t __initcall_random32_reseed7
c0019974 t __initcall_seqgen_init7
c0019978 t __initcall_rtc_hctosys7
c001997c T __con_initcall_start
c001997c t __initcall_con_init
c001997c T __initcall_end
。。。

此处就是由于
c0019920 t __initcall_i2c_dev_init6
c0019924 t __initcall_as352x_afe_i2c_init6
c0019928 t __initcall_as352x_afe_init6

c00198e4 t __initcall_enc28j60_init6
之前,所以我这里才要去改。。。

知道原理,能想到的,就是
要么把
as352x_afe_init
改到
enc28j60_init
之前一级,即优先级为5。
即在驱动中,调用:
fs_initcall(as352x_afe_init);

要么把
enc28j60_init
改到
as352x_afe_init
之后,即优先级为7
即在驱动中,调用:
late_initcall(enc28j60_init);

但是,此处麻烦就麻烦在,
如果把
as352x_afe_init
改到
enc28j60_init
之前一级,
发现后面网卡初始化enc28j60_init中,虽然读取芯片ID对了,
但是后面的IP-auto configure 有问题。
所以放弃。

如果把
enc28j60_init
改到
as352x_afe_init
之后,
但是,从system.map中看到的是,优先级为7的驱动中,明显有几个驱动,
也是和网卡初始化相关的,所以,这样改,尝试后,还是失败了。

所以,没法简单的通过调整现有的驱动的顺序,去实现顺序的调整。

最后,被逼无奈,想到了一个可以实现我们需求的办法,
那就是,单独定义一个优先级,把afe相关的初始化都放到那里面去,
这样,就可以保证,其他没什么相关的冲突了。
最后证实,这样是可以实现目的的。

具体添加一个新的优先级的步骤如下:

1.定义新的优先级

include\linux\init.h中:

#define pure_initcall(fn) __define_initcall("0",fn,1)

#define core_initcall(fn) __define_initcall("1",fn,1)
#define core_initcall_sync(fn) __define_initcall("1s",fn,1s)
#define postcore_initcall(fn) __define_initcall("2",fn,2)
#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)
#define arch_initcall(fn) __define_initcall("3",fn,3)
#define arch_initcall_sync(fn) __define_initcall("3s",fn,3s)
#define subsys_initcall(fn) __define_initcall("4",fn,4)
#define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)
#define fs_initcall(fn) __define_initcall("5",fn,5)
#define fs_initcall_sync(fn) __define_initcall("5s",fn,5s)
#define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)
#if 1
#define prev_device_initcall(fn) __define_initcall("6",fn,6)
#define prev_device_initcall_sync(fn) __define_initcall("6s",fn,6s)
#define device_initcall(fn) __define_initcall("7",fn,7)
#define device_initcall_sync(fn) __define_initcall("7s",fn,7s)
#define late_initcall(fn) __define_initcall("8",fn,8)
#define late_initcall_sync(fn) __define_initcall("8s",fn,8s)

#else
#define device_initcall(fn) __define_initcall("6",fn,6)
#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)
#define late_initcall(fn) __define_initcall("7",fn,7)
#define late_initcall_sync(fn) __define_initcall("7s",fn,7s)
#endif

2.用对应新的宏,定义我们的驱动:
prev_device_initcall(i2c_dev_init);
prev_device_initcall(as352x_afe_i2c_init);
prev_device_initcall(as352x_afe_init);

做到这里,本以为可以了,但是编译后,在system.map中,发现之前优先级为7的那几个函数,
被放到system.map最后了,而不是预想的,
在优先级7之后,在
c001997c T __con_initcall_start
c001997c t __initcall_con_init
c001997c T __initcall_end
之前。

最后,发现时没有把对应的链接文件中的宏加进去:

3.

include\asm-generic\vmlinux.lds.h

#if 1
#define INITCALLS \
*(.initcall0.init) \
*(.initcall0s.init) \
*(.initcall1.init) \
*(.initcall1s.init) \
*(.initcall2.init) \
*(.initcall2s.init) \
*(.initcall3.init) \
*(.initcall3s.init) \
*(.initcall4.init) \
*(.initcall4s.init) \
*(.initcall5.init) \
*(.initcall5s.init) \
*(.initcallrootfs.init) \
*(.initcall6.init) \
*(.initcall6s.init) \
*(.initcall7.init) \
*(.initcall7s.init) \
*(.initcall8.init) \
*(.initcall8s.init)

#else

#define INITCALLS \
*(.initcall0.init) \
*(.initcall0s.init) \
*(.initcall1.init) \
*(.initcall1s.init) \
*(.initcall2.init) \
*(.initcall2s.init) \
*(.initcall3.init) \
*(.initcall3s.init) \
*(.initcall4.init) \
*(.initcall4s.init) \
*(.initcall5.init) \
*(.initcall5s.init) \
*(.initcallrootfs.init) \
*(.initcall6.init) \
*(.initcall6s.init) \
*(.initcall7.init) \
*(.initcall7s.init)

#endif
最后,再重新编译,就可以实现我们要的,
和afe相关的驱动初始化,都在网卡enc28j60_init之前了。
也就可以在网卡里面读芯片ID了。
当然,对应编译生成的system.map文件中,
对应的通过mole_init定义的驱动,优先级也都变成7了。
而late_initcall对应优先级8了。

注:当前开发板arm的板子,所以,对应的load 脚本在:

linux-2.6.28.4\arch\arm\kernel\vmlinux.lds

看起来,应该是这个文件:

linux-2.6.28.4\arch\arm\kernel\vmlinux.lds.S

生成上面那个脚本的。

vmlinux.lds中的这一行:

__initcall_start = .;
*(.initcallearly.init) __early_initcall_end = .; *(.initcall0.init) *(.initcall0s.init) *(.initcall1.init) *(.initcall1s.init) *(.initcall2.init) *(.initcall2s.init) *(.initcall3.init) *(.initcall3s.init) *(.initcall4.init) *(.initcall4s.init) *(.initcall5.init) *(.initcall5s.init) *(.initcallrootfs.init) *(.initcall6.init) *(.initcall6s.init) *(.initcall7.init) *(.initcall7s.init)
就是将之前那些对应的init类型的函数,展开,放到这对应的位置。

㈣ linux中init的详细用法是什么呀

init模块
一般来说,Linux程序只能用另一个Linux程序启动。例如,登录Linux终端程序Mingetty。

但终端程序又由谁启动呢?在计算机上启动Linux时,内核装入并启动init程序。然后init程序

装载硬盘和启动终端程序。登录终端程序时,它启动命令行界面Shell。
在计算机上启动Linux之后,init程序监视任何关闭计算机的信号,如不间断电源(UPS)发

生的电源故障信号和重新启动命令。

init是Linux系统操作中不可缺少的程序之一。

所谓的init进程,它是一个由内核启动的用户级进程。

内核自行启动(已经被载入内存,开始运行,并已初始化所有的设备驱动程序和数据结构等

)之后,就通过启动一个用户级程序init的方式,完成引导进程。所以,init始终是第一个进程

(其进程编号始终为1)。

内核会在过去曾使用过init的几个地方查找它,它的正确位置(对Linux系统来说)

是/sbin/init。如果内核找不到init,它就会试着运行/bin/sh,如果运行失败,系统的启动也

会失败。

一、什么是INIT:
init是Linux系统操作中不可缺少的程序之一。

所谓的init进程,它是一个由内核启动的用户级进程。

内核自行启动(已经被载入内存,开始运行,并已初始化所有的设备驱动程序和数据结构等

)之后,就通过启动一个用户级程序init的方式,完成引导进程。所以,init始终是第一个进程

(其进程编号始终为1)。

内核会在过去曾使用过init的几个地方查找它,它的正确位置(对Linux系统来说)

是/sbin/init。如果内核找不到init,它就会试着运行/bin/sh,如果运行失败,系统的启动也

会失败。

二、运行级别

那么,到底什么是运行级呢?

简单的说,运行级就是操作系统当前正在运行的功能级别。这个级别从1到6 ,具有不同的

功能。

不同的运行级定义如下:(可以参考Red Hat Linux 里面的/etc/inittab)

# 0 - 停机(千万不能把initdefault 设置为0 )

# 1 - 单用户模式

# 2 - 多用户,没有 NFS

# 3 - 完全多用户模式(标准的运行级)

# 4 - 没有用到

# 5 - X11 (xwindow)

# 6 - 重新启动 (千万不要把initdefault 设置为6 )

这些级别在/etc/inittab 文件里指定。这个文件是init 程序寻找的主要文件,最先运行的

服务是放在/etc/rc.d 目录下的文件。在大多数的Linux 发行版本中,启动脚本都是位于

/etc/rc.d/init.d中的。这些脚本被用ln 命令连接到 /etc/rc.d/rcn.d 目录。(这里的n 就是

运行级0-6)

三、运行级别的配置

运行级别的配置是在/etc/inittab行内进行的,如下所示:

12 : 2 : wait : / etc / init.d / rc 2

第一个字段是一个任意指定的标签;

第二个字段表示这一行适用于运行那个级别(这里是2);

第三个字 段表示进入运行级别时,init应该运行第四个字段内的命令一次,而且init应该

等待该命令结束。/etc/init.d/rc命令运行启动和终止输入以便进入运行级别2时所需的任何命

令。

第四个字段中的命令执行设置运行级别时的一切“杂活”。它启动已经没有运行的服务,终

止不应该再在新运行级别内运行的服务。根据Linux版本的不同,采用的具体命令也不同,而且

运行级别的配置也是有差别的。

init启动时,它会在/etc/inittab内查找一个代码行,这一行指定了默认的运行级别:

id : 2 : initdefault :

你可以要求init在启动时,进入非默认运行级别,这是通过为内核指定一个“single”或“

emergency” 命令行参数来实现的。比如说,内核命令行参数的指定可通过LILO来执行。这样一

来,你就可以选择单用户模式了(即运行级别1)。

系统正在运行时,telinit命令可更改运行级别。运行级别发生变化时, init 就会

从/etc/inittab运行相应的命令。

四、/etc/inittab中的特殊配置

/etc/inittab中,有几个特殊的特性,允许init重新激活特殊事件。这些特殊特性都是用第

三个字段中的特殊关键字标记出来的。比如:

1. powerwait

允许init在电源被切断时,关闭系统。其前提是具有U P S和监视U P S并通知init电源已被

切断的软件。

2. ctrlaltdel

允许init在用户于控制台键盘上按下C t r l + A l t + D e l组合键时,重新启动系统。

注意,如果该系统放在一个公共场所,系统管理员可将C t r l + A l t + D e l组合键配置为

别的行为,比如忽略等。

3. sysinit

系统启动时准备运行的命令。比如说,这个命令将清除/tmp。

上面列出的特殊关键字尚不完整。其他的关键字及其使用详情,可参考你的inittab手册页



五、在单用户模式下引导

一个重要的运行级别就是单用户模式(运行级别1),该模式中,只有一个系统管理员使用

特定的机器,而且尽可能少地运行系统服务,其中包含登录。单用户模式对少数管理任务(比如

在/usr分区上运行fsck)而言,是很有必要的,因为这需要卸载分区,但这是不可能的,除非所

有的服务系统已被杀死。

一个正在运行的系统可以进入单用户模式,具体做法是利用init,请求运行级别1。内核启

动时,在内核命令行指定single或emergency关键字,就可进入运行级别1了。内核同时也为init

指定命令行, init从关键字得知自己不应该采用默认的运行级别(内核命令行的输入方式和你

启动系统的方式有关)。

有时,以单用户模式进行启动是必要的,这样一来,用户在装入分区之前,或至少在装入分

散的/usr分区之前,能手工运行fsck(在分散的文件系统上,任何活动都可能使其更为分散,所

以应该尽可能地运行fsck)。

如果自动化的fsck在启动时失败了,启动脚本init的运行将自动进入单用户模式。这样做是

为了防止系统使用不连贯的文件系统,这个文件系统是f s c k不能自动修复的。文件系统不连

贯的现象极为少见,而且通常会导致硬盘的不连贯或实验性的内核释放,但最好能做到防患于未

然。

由于安全上的考虑,在单用户模式下,启动外壳脚本之前,配置得当的系统会要求用户提供

root密码。否则,它会简单地为L I L O输入合适的一行代码,以r o o t的身份登录(当然,如

果/etc/passwd已经由于文件系统的问题而不连贯了,就不适合这里的原则了,为对付这种情况

,你最好随时准备一张启动盘)。

不同的运行级有不同的用处,也应该根据自己的不同情形来设置。

例如,如果丢失了root口令,那么可以让机器启动进入单用户状态。在启动后的 lilo 提示

符下输入:

init=/bin/sh rw 使机器进入运行级1 ,并把 root 文件系统挂为读写。他会跳过所有系统

认证,让你可以使用passwd 程序来改变root口令,然后启动到一个新的运行级。

㈤ 怎么开始读Linux内核源码

本人是一名 android display方面的工程师,结合实际工作经验聊聊(观点未必正确)
1. 准备工作:选择什么样的版本,使用什么样的工具,这个需要考虑好。
如果是要参考书的话,kernel版本一般都应该选择和书里面同步的版本,不要去选择最新的版本。因为最新的版本,各种改动比较多,反而对不上书了。
工具问题,你可以选择windows下的source insight,也可以选择linux下vim+ctags;

2. 第一遍浏览,我建议是先把kernel里面的 start_kernel() 函数里面的东西看清楚(不一定看明白),看看这个过程中,出现了什么玩意,有哪些分支,并将分支初略的画出一张图来(当然,我自己并没做到这一点,有点讽刺了)。
这里面最重要的几个地方,我个人认为,应该搞明白mole机制,它是怎么通过编译链接脚本放在特定的区域,然后系统起来后,又是如何去(按照什么规则)去加载这些模块;
应该搞明白sysfs系统,这个对于驱动和用户空间的连接,有非常大的作用;
系统调用的open()应该走一遭,看看用户空间到kernel之间参数是如何传递,又是怎么通过vfs系统,把open的动作最终落实到某一个驱动的open()上去的;
对kernel启动过程中,内存的分配算法,是怎么从伙伴算法切换到最终的算法上,也应该略有耳闻;对fork()函数的过程有所明白。
对kernel中基本的数据结构实现过程、锁机制实现过程要有概念:
这一部分,总结起来,应该看的路线是:

start_kernel()
mole_init() 宏实现 // 看这个的时候,强烈建议,把makefile真正的意图弄明白
open() 系统调用
fork() 系统调用
sysfs 框架实现
双链表是如何实现的;
锁最终是依靠什么来保证的?(其实还是硬件来保证的)

对于数据结构和锁这部分,就按照《Linux内核设计与实现》里面的东西挨个挨个看。有兴趣,自己也可以实现一个双链表公共API,随便哪个项目,一旦用上,直接抛进去,也未尝不可。

第一遍浏览,窃以为,上面这几部分看明白后,kernel的代码对你依然很难,但已经不再有神秘的面纱。
后续,你想研究某个模块,直接快速定位到那边去就行。

3. 在完全用眼睛看完上面这部分内容后,kernel的路或许找到了,但是,万里长征的第一步,并没有迈出。这个时候,动手是很重要的了。
网上有各种方法,比如说,去kernel maillist里面订阅bug,然后自己试着解bug,此方法可取,而且是非常好。这里会遇到一个问题是,我们该怎么调试?
有人是架各种虚拟机或者多台物理机一起开干,这个可以有。(但是本人动手能力确实有限,这个没干成,本人是后面借助了公司的开发板)
如果你也像我一样,动手能力不足,如果你恰巧是手机或者类似手机开发公司的,你可以直接使用公司的开发机,通过串口log,将printk()的级别设置为3,把你需要的信息打印出来;
如果你是学生或者爱好者,可以花500左右人民币,去淘宝上买一个开发板,也是带串口的,所有的debug信息都是通过串口打印出来,保存到一个Log文件中,然后分析;
至于买什么样的板子,你可以随便选择,经典的s3c2440也行,高端点的树莓派,或者全志什么的,都可以。(不推荐全志,他们添加和修改硬件比较多,驱动也许不好搞)

4. 选择你喜欢的模块,进行深入研究,通过log打印,反复推敲,这个时候,bug是最好的导师。多关注kernel/Documents/ 目录下的文档。
你需要注意的是,一定要把该模块无关的东西砍掉,否则,生命是有限的,而代码是无限的。
最后一句话是,在用眼睛看完后,思考过后,还得动手,然后再思考。否则,只读的话,仅能扫盲。

㈥ 如何查看linux系统源码

一般在Linux系统中的/usr/src/linux*.*.*(*.*.*代表的是内核版本,如2.4.23)目录下就是内核源代码(如果没有类似目录,是因为还没安装内核代码)。另外还可从互连网上免费下载。注意,不要总到http://www.kernel.org/去下载,最好使用它的镜像站点下载。请在http://www.kernel.org/mirrors/里找一个合适的下载点,再到pub/linux/kernel/v2.6/目录下去下载2.4.23内核。
代码目录结构
在阅读源码之前,还应知道Linux内核源码的整体分布情况。现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序和网络等组成。Linux内核源码的各个目录大致与此相对应,其组成如下(假设相对于Linux-2.4.23目录):
1.arch目录包括了所有和体系结构相关的核心代码。它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录。
2.include目录包括编译核心所需要的大部分头文件,例如与平台无关的头文件在include/linux子目录下。
3.init目录包含核心的初始化代码(不是系统的引导代码),有main.c和Version.c两个文件。这是研究核心如何工作的好起点。
4.mm目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下。
5.drivers目录中是系统中所有的设备驱动程序。它又进一步划分成几类设备驱动,每一种有对应的子目录,如声卡的驱动对应于drivers/sound。
6.ipc目录包含了核心进程间的通信代码。
7.moles目录存放了已建好的、可动态加载的模块。
8.fs目录存放Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext3文件系统对应的就是ext3子目录。
Kernel内核管理的核心代码放在这里。同时与处理器结构相关代码都放在arch/*/kernel目录下。
9.net目录里是核心的网络部分代码,其每个子目录对应于网络的一个方面。
10.lib目录包含了核心的库代码,不过与处理器结构相关的库代码被放在arch/*/lib/目录下。
11.scripts目录包含用于配置核心的脚本文件。
12.documentation目录下是一些文档,是对每个目录作用的具体说明。
一般在每个目录下都有一个.depend文件和一个Makefile文件。这两个文件都是编译时使用的辅助文件。仔细阅读这两个文件对弄清各个文件之间的联系和依托关系很有帮助。另外有的目录下还有Readme文件,它是对该目录下文件的一些说明,同样有利于对内核源码的理解。
在阅读方法或顺序上,有纵向与横向之分。所谓纵向就是顺着程序的执行顺序逐步进行;所谓横向,就是按模块进行。它们经常结合在一起进行。对于Linux启动的代码可顺着Linux的启动顺序一步步来阅读;对于像内存管理部分,可以单独拿出来进行阅读分析。实际上这是一个反复的过程,不可能读一遍就理解。

㈦ 如何从linux内核的源码树中找到init目录下的do_mounts.c文件,谢谢了

你都知道路径了,还要问??
init目录下就10几个文件,还不好找啊??
你是不是没有源码目录阿,去www.kernel.org去下个内核源码包,然后解压;你就有自己的源码目录了。

㈧ linux内核源码详解

Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux目录下的东西就是内核源代码。
对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,我认为,基本要求是:1、操作系统的基本知识; 2、对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。
另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录):
arch 这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。
include 这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。
init 此目录包含核心启动代码。
mm 此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/-/mm目录下,如对应于X86的就是arch/i386/mm/fault.c 。
drivers 系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。
ipc 此目录包含了核心的进程间通讯代码。
moles 此目录包含已建好可动态加载的模块。
fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。
kernel 主要核心代码。同时与处理器结构相关代码都放在arch/-/kernel目录下。
net 核心的网络部分代码。里面的每个子目录对应于网络的一个方面。
lib 此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/-/lib/目录下。
scripts 此目录包含用于配置核心的脚本文件。
Documentation 此目录是一些文档,起参考作用。

㈨ 为什么在linux的3.0.4的源代码中,找不到kernel、init、fs、mm等目录

找个你熟悉的函数,用grep -r在源码树里面搜索嘛

㈩ 如何查看 linux 内核源代码

Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux目录下的东西就是内核源代码。

对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,我认为,基本要求是:1、操作系统的基本知识;2、对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录):

arch 这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。

include 这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。

init 此目录包含核心启动代码。

mm 此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下,如对应于X86的就是arch/i386/mm/fault.c 。

drivers 系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。

ipc 此目录包含了核心的进程间通讯代码。

moles 此目录包含已建好可动态加载的模块。

fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。

kernel 主要核心代码。同时与处理器结构相关代码都放在arch/*/kernel目录下。

net 核心的网络部分代码。里面的每个子目录对应于网络的一个方面。

lib 此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/*/lib/目录下。

scripts此目录包含用于配置核心的脚本文件。

Documentation 此目录是一些文档,起参考作用。

俗话说:“工欲善其事,必先利其器”。 阅读象Linux核心代码这样的复杂程序令人望而生畏。它象一个越滚越大的雪球,阅读核心某个部分经常要用到好几个其他的相关文件,不久你将会忘记你原来在干什么。所以没有一个好的工具是不行的。由于大部分爱好者对于Window平台比较熟悉,并且还是常用Window系列平台,所以在此我介绍一个Window下的一个工具软件:Source Insight。这是一个有30天免费期的软件,可以从www.sourcedyn.com下载。安装非常简单,和别的安装一样,双击安装文件名,然后按提示进行就可以了。安装完成后,就可启动该程序。这个软件使用起来非常简单,是一个阅读源代码的好工具。它的使用简单介绍如下:先选择Project菜单下的new,新建一个工程,输入工程名,接着要求你把欲读的源代码加入(可以整个目录加)后,该软件就分析你所加的源代码。分析完后,就可以进行阅读了。对于打开的阅读文件,如果想看某一变量的定义,先把光标定位于该变量,然后点击工具条上的相应选项,该变量的定义就显示出来。对于函数的定义与实现也可以同样操作。别的功能在这里就不说了,有兴趣的朋友可以装一个Source Insight,那样你阅读源代码的效率会有很大提高的。怎么样,试试吧!

阅读全文

与linuxinit源码相关的资料

热点内容
内网ntp时间同步服务器地址 浏览:181
香肠派对脚本源码 浏览:90
jsp服务器怎么转发 浏览:857
服务器和网站开发有什么区别 浏览:764
如何下载测试服务器 浏览:179
怎么教育孩子的app 浏览:172
交叉编译的输出文件 浏览:330
手机app怎么变更办税员 浏览:936
sql服务停用命令 浏览:912
为什么系统要用两个云服务器 浏览:680
两个pdf怎么合并 浏览:294
php查询为空 浏览:590
香港服务器丢包了怎么办 浏览:47
linux系统管理教程 浏览:645
共享文件夹怎么设置只读文件 浏览:297
小米添加云服务器地址 浏览:583
qt入门pdf 浏览:672
视频监控取消默认加密 浏览:295
云服务器怎么设置输入键盘 浏览:817
单片机支持多大mhz 浏览:44