导航:首页 > 源码编译 > dtw算法语音识别

dtw算法语音识别

发布时间:2024-11-10 23:09:33

1. matlab中的特定人语音识别算法DTW算法的应用例程

语音识别原理

语音识别系统的本质就是一种模式识别系统,它也包括特征提取、模式匹配、参考模式库等基本单元。由于语音信号是一种典型的非平稳信号,加之呼吸气流、外部噪音、电流干扰等使得语音信号不能直接用于提取特征,而要进行前期的预处理。预处理过程包括预滤波、采样和量化、分帧、加窗、预加重、端点检测等。经过预处理的语音数据就可以进行特征参数提取。在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。后续的处理过程还可能包括更高层次的词法、句法和文法处理等,从而最终将输入的语音信号转变成文本或命令

DTW算法原理

DTW是把时间规整和距离测度计算结合起来的一种非线性规整技术,它寻找一个规整函数im=Ф(in),将测试矢量的时间轴n非线性地映射到参考模板的时间轴m上,并使该函数满足:

D就是处于最优时间规整情况下两矢量的距离。由于DTW不断地计算两矢量的距离以寻找最优的匹配路径,所以得到的是两矢量匹配时累积距离最小所对应的规整函数,这就保证了它们之间存在的最大声学相似性。

DTW算法的实质就是运用动态规划的思想,利用局部最佳化的处理来自动寻找一条路径,沿着这条路径,两个特征矢量之间的累积失真量最小,从而避免由于时长不同而可能引入的误差。

2. 时间序列分析——DTW算法详解

DTW(dynamic time warping)是时间序列分析中一个很早(1994年,论文的年纪比我都大)也很经典的算法了。它其实借用的是经典算法的“动态规划”的思想。一般来说,时间序列数据如果要做分类,那么大体可以将实验步骤分为:数据预处理(去噪或数据增强),数据表征,选取分类器(机器学习算法还需要选取合适的距离计算方法)。虽然DTW算法也给出了路径,但我实在想不出如何利用path,因此我更倾向于将DTW算法归为距离计算方法。

第一部分Introction不再介绍。直接介绍第二部分:Dynamic Time Warping

作者首先提到,dtw算法成功应用在了语音识别领域——研究者将现实中一个单词的发音(其实就是一条时间序列)与模板库中单词的发音去一个个匹配。怎么衡量匹配程度的大小呢?

3. raw语音识别方法

1、动态时间规整(DTW)算法。DTW算法通过检测两个语音序列之间的最大相似性来实现匹配,能够有效地应对不同说话人的语速变化。它广泛用于小词汇量的语音识别系统中。
2、隐马尔可夫模型(HMM)。HMM利用统计学方法建立语音的隐藏马尔可夫模型,并结合观察序列实现语音识别。是统计语音识别的基础,应用非常广泛。

阅读全文

与dtw算法语音识别相关的资料

热点内容
程序员到公司当领导 浏览:223
用算法控制玩家的行为 浏览:482
androidsdk17下载 浏览:792
怎么给单独表格添加密码 浏览:12
下载压缩密码 浏览:259
android系统上编程 浏览:468
单片机模拟i2c从机 浏览:236
教育年报系统服务器如何开启 浏览:840
对称密钥加密后的长度 浏览:292
微制造编程软件下载 浏览:106
旋住宿酒店用哪个App最好 浏览:60
三菱编程中怎么创建子程序 浏览:199
在单片机温度输入采集信号有 浏览:684
电脑云服务器同步 浏览:418
方舟生存进化手游版怎么转服务器 浏览:89
哪个app可以听小说 浏览:160
网络发送数据如何加密 浏览:201
教材完全解读pdf 浏览:820
什么是多台服务器 浏览:36
菜鸟音乐编辑app哪个好 浏览:548