❶ MD5算法原理及实现
散列函数,也称作哈希函数,消息摘要函数,单向函数或者杂凑函数。散列函数主要用于验证数据的完整性。通过散列函数,可以创建消息的“数字指纹”,消息接收方可以通过校验消息的哈希值来验证消息的完整性,防止消息被篡改。散列函数具有以下特性:
任何消息经过散列函数处理后,都会产生一个唯一的散列值,这个散列值可以用来验证消息的完整性。计算消息散列值的过程被称为“消息摘要”,计算消息散列值的算法被称为消息摘要算法。常使用的消息摘要算法有:MD—消息摘要算法,SHA—安全散列算法,MAC—消息认证码算法。本文主要来了解MD算法。
MD5算法是典型的消息摘要算法,它是由MD4,MD3和MD2算法演变而来。无论是哪一种MD算法,其原理都是接受一个任意长度的消息并产生一个128位的消息摘要。如果把得到的消息摘要转换成十六进制字符串,则会得到一个32字节长度的字符串,我们平常见到的大部分MD数字指纹就是一个长度为32的十六进制字符串。
假设原始消息长度是b(以bit为单位),注意这里b可以是任意长度,并不一定要是8的整数倍。计算该消息MD5值的过程如下:
在计算消息的MD5值之前,首先对原始信息进行填充,这里的信息填充分为两步。
第一步,对原始信息进行填充,填充之后,要求信息的长度对512取余等于448。填充的规则如下:假设原始信息长度为b bit,那么在信息的b+1 bit位填充1,剩余的位填充0,直到信息长度对512取余为448。这里有一点需要注意,如果原始信息长度对512取余正好等于448,这种情况仍然要进行填充,很明显,在这时我们要填充的信息长度是512位,直到信息长度对512取余再次等于448。所以,填充的位数最少为1,最大为512。
第二步,填充信息长度,我们需要把原始信息长度转换成以bit为单位,然后在第一步操作的结果后面填充64bit的数据表示原始信息长度。第一步对原始信息进行填充之后,信息长度对512取余结果为448,这里再填充64bit的长度信息,整个信息恰好可以被512整除。其实从后续过程可以看到,计算MD5时,是将信息分为若干个分组进行处理的,每个信息分组的长度是512bit。
在进行MD5值计算之前,我们先来做一些定义。
下面就是最核心的信息处理过程,计算MD5的过程实际上就是轮流处理每个信息分组的过程。
MD5算法实现如下所示。
这里也和Java提供的标准MD5算法进行了对比,通过测试可以看到该MD5计算的结果和Java标准MD5算法的计算结果是一样的。
❷ 谁可以告诉我md5加密原理
MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经MD2、MD3和MD4发展而来。
Message-Digest泛指字节串(Message)的Hash变换,就是把一个任意长度的字节串变换成一定长的大整数。请注意我使用了“字节串”而不是“字符串”这个词,是因为这种变换只与字节的值有关,与字符集或编码方式无关。
MD5将任意长度的“字节串”变换成一个128bit的大整数,并且它是一个不可逆的字符串变换算法,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。
MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。
MD5还广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,而系统并不“知道”用户的密码是什么。
一些黑客破获这种密码的方法是一种被称为“跑字典”的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。
即使假设密码的最大长度为8,同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘组,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。
在很多电子商务和社区应用中,管理用户的Account是一种最常用的基本功能,尽管很多Application Server提供了这些基本组件,但很多应用开发者为了管理的更大的灵活性还是喜欢采用关系数据库来管理用户,懒惰的做法是用户的密码往往使用明文或简单的变换后直接保存在数据库中,因此这些用户的密码对软件开发者或系统管理员来说可以说毫无保密可言,本文的目的是介绍MD5的Java Bean的实现,同时给出用MD5来处理用户的Account密码的例子,这种方法使得管理员和程序设计者都无法看到用户的密码,尽管他们可以初始化它们。但重要的一点是对于用户密码设置习惯的保护。
有兴趣的读者可以从这里取得MD5也就是RFC 1321的文本。http://www.ietf.org/rfc/rfc1321.txt
❸ md5码是如何生成的,什么原理
原理在MD5算法中,首先需要对信息进行填充,使其位长对512求余的结果等于448。因此,信息的位长(Bits Length)将被扩展至N*512+448,N为一个非负整数,N可以是零。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,信息的位长=N*512+448+64=(N+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。总体流程如下图所示,表示第i个分组,每次的运算都由前一轮的128位结果值和第i块512bit值进行运算。初始的128位值为初试链接变量,这些参数用于第一轮的运算,以大端字节序来表示,他们分别为:A=0x01234567,B=0x89ABCDEF,C=0xFEDCBA98,D=0x76543210。
MD5算法的整体流程图
MD5算法的整体流程图[1]
每一分组的算法流程如下:
第一分组需要将上面四个链接变量复制到另外四个变量中:A到a,B到b,C到c,D到d。从第二分组开始的变量为上一分组的运算结果。
主循环有四轮(MD4只有三轮),每轮循环都很相似。第一轮进行16次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向左环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之一。
以下是每次操作中用到的四个非线性函数(每轮一个)。
F(X,Y,Z) =(X&Y)|((~X)&Z)
G(X,Y,Z) =(X&Z)|(Y&(~Z))
H(X,Y,Z) =X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&;是与,|是或,~是非,^是异或)
这四个函数的说明:如果X、Y和Z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。
F是一个逐位运算的函数。即,如果X,那么Y,否则Z。函数H是逐位奇偶操作符。
假设Mj表示消息的第j个子分组(从0到15),常数ti是4294967296*abs(sin(i))的整数部分,i取值从1到64,单位是弧度。(4294967296等于2的32次方)
FF(a,b,c,d,Mj,s,ti)表示 a = b + ((a + F(b,c,d) + Mj + ti) << s)
GG(a,b,c,d,Mj,s,ti)表示 a = b + ((a + G(b,c,d) + Mj + ti) << s)
HH(a,b,c,d,Mj,s,ti)表示 a = b + ((a + H(b,c,d) + Mj + ti) << s)
Ⅱ(a,b,c,d,Mj,s,ti)表示 a = b + ((a + I(b,c,d) + Mj + ti) << s)
这四轮(64步)是:
第一轮
FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)
第二轮
GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)
第三轮
HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)
第四轮
Ⅱ(a,b,c,d,M0,6,0xf4292244)
Ⅱ(d,a,b,c,M7,10,0x432aff97)
Ⅱ(c,d,a,b,M14,15,0xab9423a7)
Ⅱ(b,c,d,a,M5,21,0xfc93a039)
Ⅱ(a,b,c,d,M12,6,0x655b59c3)
Ⅱ(d,a,b,c,M3,10,0x8f0ccc92)
Ⅱ(c,d,a,b,M10,15,0xffeff47d)
Ⅱ(b,c,d,a,M1,21,0x85845dd1)
Ⅱ(a,b,c,d,M8,6,0x6fa87e4f)
Ⅱ(d,a,b,c,M15,10,0xfe2ce6e0)
Ⅱ(c,d,a,b,M6,15,0xa3014314)
Ⅱ(b,c,d,a,M13,21,0x4e0811a1)
Ⅱ(a,b,c,d,M4,6,0xf7537e82)
Ⅱ(d,a,b,c,M11,10,0xbd3af235)
Ⅱ(c,d,a,b,M2,15,0x2ad7d2bb)
Ⅱ(b,c,d,a,M9,21,0xeb86d391)
所有这些完成之后,将A、B、C、D分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是A、B、C和D的级联。
当你按照我上面所说的方法实现MD5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。
MD5 ("") =
MD5 ("a") =
MD5 ("abc") =
MD5 ("message digest") =
MD5 ("abcdefghijklmnopqrstuvwxyz") =
MD5 ("") =
ImportsSystem
ImportsSystem.Security.Cryptography
ImportsSystem.Text
MoleExample
'哈希输入字符串并返回一个32字符的十六进制字符串哈希。
FunctiongetMd5Hash(ByValinputAsString)AsString
'创建新的一个MD5CryptoServiceProvider对象的实例。
()
'输入的字符串转换为字节数组,并计算哈希。
DimdataAsByte()=md5Hasher.ComputeHash(Encoding.Default.GetBytes(input))
'创建一个新的StringBuilder收集的字节,并创建一个字符串。
DimsBuilderAsNewStringBuilder()
'通过每个字节的哈希数据和格式为十六进制字符串的每一个循环。
DimiAsInteger
Fori=0Todata.Length-1
sBuilder.Append(data(i).ToString("x2"))
Nexti
'返回十六进制字符串。
ReturnsBuilder.ToString()
EndFunction
'验证对一个字符串的哈希值。
FunctionverifyMd5Hash(ByValinputAsString,ByValhashAsString)AsBoolean
'哈希的输入。
DimhashOfInputAsString=getMd5Hash(input)
'创建StringComparer1的哈希进行比较。
DimcomparerAsStringComparer=StringComparer.OrdinalIgnoreCase
If0=comparer.Compare(hashOfInput,hash)Then
ReturnTrue
Else
ReturnFalse
EndIf
EndFunction
SubMain()
DimsourceAsString="HelloWorld!"
DimhashAsString=getMd5Hash(source)
Console.WriteLine("进行MD5加密的字符串为:"+source+"加密的结果是:"+hash+".")
Console.WriteLine("验证哈希...")
IfverifyMd5Hash(source,hash)Then
Console.WriteLine("哈希值是相同的。")
Else
Console.WriteLine("哈希值是不相同的。")
EndIf
EndSub
EndMole
'此代码示例产生下面的输出:
'
'进行MD5加密的字符串为:HelloWorld!加密的结果是:.
'验证哈希...
'哈希值是相同的。
伪代码实现
//Note:^32whencalculatingvarint[64]r,k//rspecifiestheper-roundshiftamountsr[0..15]:={7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22}r[16..31]:={5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20}r[32..47]:={4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23}r[48..63]:={6,10,15,21,6,10,15,21,6,10,15,21,6,10,15,21}//:forifrom0to63k[i]:=floor(abs(sin(i+1))×2^32)//Initializevariables:varinth0:=0x67452301varinth1:=0xEFCDAB89varinth2:=0x98BADCFEvarinth3:=0x10325476//Pre-processing:append"1"bittomessageappend"0"bitsuntilmessagelengthinbits≡448(mod512)appendbitlengthofmessageas64-bitlittle-endianintegertomessage//-bitchunks:foreach512--bitlittle-endianwordsw[i],0≤i≤15//:varinta:=h0varintb:=h1varintc:=h2varintd:=h3//Mainloop:forifrom0to63if0≤i≤15thenf:=(bandc)or((notb)andd)g:=ielseif16≤i≤31f:=(dandb)or((notd)andc)g:=(5×i+1)mod16elseif32≤i≤47f:=bxorcxordg:=(3×i+5)mod16elseif48≤i≤63f:=cxor(bor(notd))g:=(7×i)mod16temp:=dd:=cc:=bb:=((a+f+k[i]+w[g])leftrotater[i])+ba:=temp//Addthischunk'shashtoresultsofar:h0:=h0+ah1:=h1+bh2:=h2+ch3:=h3+dvarintdigest:=h0appendh1appendh2appendh3//(expressedaslittle-endian)MD5加密工具
利用MD5的算法原理,可以使用各种计算机语言进行实现,形成各种各样的MD5加密校验工具。有很多的在线工具可以实现这一点,这些在线工具一般是采用JavaScript语言实现,使用非常方便快捷。
❹ md5 算法程序+详细注释,高分求教!
MD5加密算法简介
一、综述
MD5的全称是message-digest algorithm 5(信息-摘要算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一 个任意长度的字节串变换成一定长的大整数)。不管是md2、md4还是md5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些 算法的结构或多或少有些相似,但md2的设计与md4和md5完全不同,那是因为md2是为8位机器做过设计优化的,而md4和md5却是面向32位的电 脑。这三个算法的描述和c语言源代码在internet rfcs 1321中有详细的描述(http://www.ietf.org/rfc/rfc1321.txt),这是一份最权威的文档,由ronald l. rivest在1992年8月向ieft提交。
rivest在1989年开发出md2算法。在这个算法中,首先对信 息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,rogier 和chauvaud发现如果忽略了检验和将产生md2冲突。md2算法的加密后结果是唯一的--既没有重复。
为了加强算法的安全性, rivest在1990年又开发出md4算法。md4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要 通过三个不同步骤的处理。den boer和bosselaers以及其他人很快的发现了攻击md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的个人电 脑在几分钟内找到md4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,md4就此 被淘汰掉了。
尽管md4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了md5以外,其中比较有名的还有sha-1、ripe-md以及haval等。
一年以后,即1991年,rivest开发出技术上更为趋近成熟的md5算法。它在md4的基础上增加了"安全-带子"(safety-belts)的 概念。虽然md5比md4稍微慢一些,但却更为安全。这个算法很明显的由四个和md4设计有少许不同的步骤组成。在md5算法中,信息-摘要的大小和填充 的必要条件与md4完全相同。den boer和bosselaers曾发现md5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。
van oorschot和wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索md5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一 个冲突。但单从1991年到2001年这10年间,竟没有出现替代md5算法的md6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有 太多的影响md5的安全性。上面所有这些都不足以成为md5的在实际应用中的问题。并且,由于md5算法的使用不需要支付任何版权费用的,所以在一般的情 况下(非绝密应用领域。但即便是应用在绝密领域内,md5也不失为一种非常优秀的中间技术),md5怎么都应该算得上是非常安全的了。
二、算法的应用
md5的典型应用是对一段信息(message)产生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:
md5 (tanajiya.tar.gz) =
这就是tanajiya.tar.gz文件的数字签名。md5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的md5信 息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个 文件重新计算md5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用md5还可以防止文件作者的 "抵赖",这就是所谓的数字签名应用。
md5还广泛用于加密和解密技术上。比如在unix系统中用户的密码就是以md5(或其它类似的算 法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成md5值,然后再去和保存在文件系统中的md5值进行比较,进而确定输入的 密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的 用户知道,而且还在一定程度上增加了密码被破解的难度。
正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字 典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用md5程序计算出这些字典项的md5值,然后 再用目标的md5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是p(62,1)+p(62,2)….+p (62,8),那也已经是一个很天文的数字了,存储这个字典就需要tb级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码md5值的情况 下才可以。这种加密技术被广泛的应用于unix系统中,这也是为什么unix系统比一般操作系统更为坚固一个重要原因。
三、算法描述
对md5算法简要的叙述可以为:md5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。
在md5算法中,首先需要对信息进行填充,使其字节长度对512求余的结果等于448。因此,信息的字节长度(bits length)将被扩展至n*512+448,即n*64+56个字节(bytes),n为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个 0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字 节长度=n*512+448+64=(n+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。
md5中有四个32位被称作链接变量(chaining variable)的整数参数,他们分别为:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。
当设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中512位信息分组的数目。
将上面四个链接变量复制到另外四个变量中:a到a,b到b,c到c,d到d。
主循环有四轮(md4只有三轮),每轮循环都很相似。第一轮进行16次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结 果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之 一。
以一下是每次操作中用到的四个非线性函数(每轮一个)。
f(x,y,z) =(x&y)|((~x)&z)
g(x,y,z) =(x&z)|(y&(~z))
h(x,y,z) =x^y^z
i(x,y,z)=y^(x|(~z))
(&是与,|是或,~是非,^是异或)
这四个函数的说明:如果x、y和z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。
f是一个逐位运算的函数。即,如果x,那么y,否则z。函数h是逐位奇偶操作符。
假设mj表示消息的第j个子分组(从0到15),
<< ff(a,b,c,d,mj,s,ti) 表示 a=b+((a+(f(b,c,d)+mj+ti)
<< gg(a,b,c,d,mj,s,ti) 表示 a=b+((a+(g(b,c,d)+mj+ti)
<< hh(a,b,c,d,mj,s,ti) 表示 a=b+((a+(h(b,c,d)+mj+ti)
<< ii(a,b,c,d,mj,s,ti) 表示 a=b+((a+(i(b,c,d)+mj+ti)
<< 这四轮(64步)是:
第一轮
ff(a,b,c,d,m0,7,0xd76aa478)
ff(d,a,b,c,m1,12,0xe8c7b756)
ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
ff(a,b,c,d,m4,7,0xf57c0faf)
ff(d,a,b,c,m5,12,0x4787c62a)
ff(c,d,a,b,m6,17,0xa8304613)
ff(b,c,d,a,m7,22,0xfd469501)
ff(a,b,c,d,m8,7,0x698098d8)
ff(d,a,b,c,m9,12,0x8b44f7af)
ff(c,d,a,b,m10,17,0xffff5bb1)
ff(b,c,d,a,m11,22,0x895cd7be)
ff(a,b,c,d,m12,7,0x6b901122)
ff(d,a,b,c,m13,12,0xfd987193)
ff(c,d,a,b,m14,17,0xa679438e)
ff(b,c,d,a,m15,22,0x49b40821)
第二轮
gg(a,b,c,d,m1,5,0xf61e2562)
gg(d,a,b,c,m6,9,0xc040b340)
gg(c,d,a,b,m11,14,0x265e5a51)
gg(b,c,d,a,m0,20,0xe9b6c7aa)
gg(a,b,c,d,m5,5,0xd62f105d)
gg(d,a,b,c,m10,9,0x02441453)
gg(c,d,a,b,m15,14,0xd8a1e681)
gg(b,c,d,a,m4,20,0xe7d3fbc8)
gg(a,b,c,d,m9,5,0x21e1cde6)
gg(d,a,b,c,m14,9,0xc33707d6)
gg(c,d,a,b,m3,14,0xf4d50d87)
gg(b,c,d,a,m8,20,0x455a14ed)
gg(a,b,c,d,m13,5,0xa9e3e905)
gg(d,a,b,c,m2,9,0xfcefa3f8)
gg(c,d,a,b,m7,14,0x676f02d9)
gg(b,c,d,a,m12,20,0x8d2a4c8a)
第三轮
hh(a,b,c,d,m5,4,0xfffa3942)
hh(d,a,b,c,m8,11,0x8771f681)
hh(c,d,a,b,m11,16,0x6d9d6122)
hh(b,c,d,a,m14,23,0xfde5380c)
hh(a,b,c,d,m1,4,0xa4beea44)
hh(d,a,b,c,m4,11,0x4bdecfa9)
hh(c,d,a,b,m7,16,0xf6bb4b60)
hh(b,c,d,a,m10,23,0xbebfbc70)
hh(a,b,c,d,m13,4,0x289b7ec6)
hh(d,a,b,c,m0,11,0xeaa127fa)
hh(c,d,a,b,m3,16,0xd4ef3085)
hh(b,c,d,a,m6,23,0x04881d05)
hh(a,b,c,d,m9,4,0xd9d4d039)
hh(d,a,b,c,m12,11,0xe6db99e5)
hh(c,d,a,b,m15,16,0x1fa27cf8)
hh(b,c,d,a,m2,23,0xc4ac5665)
第四轮
ii(a,b,c,d,m0,6,0xf4292244)
ii(d,a,b,c,m7,10,0x432aff97)
ii(c,d,a,b,m14,15,0xab9423a7)
ii(b,c,d,a,m5,21,0xfc93a039)
ii(a,b,c,d,m12,6,0x655b59c3)
ii(d,a,b,c,m3,10,0x8f0ccc92)
ii(c,d,a,b,m10,15,0xffeff47d)
ii(b,c,d,a,m1,21,0x85845dd1)
ii(a,b,c,d,m8,6,0x6fa87e4f)
ii(d,a,b,c,m15,10,0xfe2ce6e0)
ii(c,d,a,b,m6,15,0xa3014314)
ii(b,c,d,a,m13,21,0x4e0811a1)
ii(a,b,c,d,m4,6,0xf7537e82)
ii(d,a,b,c,m11,10,0xbd3af235)
ii(c,d,a,b,m2,15,0x2ad7d2bb)
ii(b,c,d,a,m9,21,0xeb86d391)
常数ti可以如下选择:
在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。(4294967296等于2的32次方)
所有这些完成之后,将a、b、c、d分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是a、b、c和d的级联。
当你按照我上面所说的方法实现md5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。
md5 ("") =
md5 ("a") =
md5 ("abc") =
md5 ("message digest") =
md5 ("abcdefghijklmnopqrstuvwxyz") =
md5 ("") =
md5 ("1234567890") =
如果你用上面的信息分别对你做的md5算法实例做测试,最后得出的结论和标准答案完全一样,那我就要在这里象你道一声祝贺了。要知道,我的程序在第一次编译成功的时候是没有得出和上面相同的结果的。
四、MD5的安全性
md5相对md4所作的改进:
1. 增加了第四轮;
2. 每一步均有唯一的加法常数;
3. 为减弱第二轮中函数g的对称性从(x&y)|(x&z)|(y&z)变为(x&z)|(y&(~z));
4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;
5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;
6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。