导航:首页 > 源码编译 > dijkstra算法c语言实现

dijkstra算法c语言实现

发布时间:2024-12-04 11:06:00

㈠ c语言程序设计——警察与小偷

#include <stdio.h>
#define true 1
#define false 0
#define I 9999 /* 无穷大 */
#define N 20 /* 城市顶点的数目 */

int cost[N][N] = {
{0,3,I,I,I,1,I,I,I,I,I,I,I,I,I,I,I,I,I,I},
{3,0,5,I,I,I,6,I,I,I,I,I,I,I,I,I,I,I,I,I},
{I,5,0,4,I,I,I,1,I,I,I,I,I,I,I,I,I,I,I,I},
{I,I,4,0,2,I,I,I,6,I,I,I,I,I,I,I,I,I,I,I},
{I,I,I,2,0,I,I,I,I,7,I,I,I,I,I,I,I,I,I,I},
{1,I,I,I,I,0,1,I,I,I,2,I,I,I,I,I,I,I,I,I},
{I,6,I,I,I,1,0,6,I,I,I,7,I,I,I,I,I,I,I,I},
{I,I,1,I,I,I,6,0,2,I,I,I,3,I,I,I,I,I,I,I},
{I,I,I,6,I,I,I,2,0,8,I,I,I,4,I,I,I,I,I,I},
{I,I,I,I,7,I,I,I,8,0,I,I,I,I,5,I,I,I,I,I},
{I,I,I,I,I,2,I,I,I,I,0,4,I,I,I,3,I,I,I,I},
{I,I,I,I,I,I,7,I,I,I,4,0,3,I,I,I,4,I,I,I},
{I,I,I,I,I,I,I,3,I,I,I,3,0,3,I,I,I,5,I,I},
{I,I,I,I,I,I,I,I,4,I,I,I,3,0,7,I,I,I,2,I},
{I,I,I,I,I,I,I,I,I,5,I,I,I,7,0,I,I,I,I,3},
{I,I,I,I,I,I,I,I,I,I,3,I,I,I,I,0,5,I,I,I},
{I,I,I,I,I,I,I,I,I,I,I,4,I,I,I,5,0,8,I,I},
{I,I,I,I,I,I,I,I,I,I,I,I,5,I,I,I,8,0,6,I},
{I,I,I,I,I,I,I,I,I,I,I,I,I,2,I,I,I,6,0,4},
{I,I,I,I,I,I,I,I,I,I,I,I,I,I,3,I,I,I,4,0}
};
int dist[N]; /* 存储当前最短路径长度 */
int v0 = 'A' - 65; /* 初始点是 A */

void main()
{
int final[N], i, v, w, min;

/* 初始化最短路径长度数据,所有数据都不是最终数据 */
for (v = 0; v < N; v++) {
final[v] = false;
dist[v] = cost[v0][v];
}

/* 首先选v0到v0的距离一定最短,最终数据 */
final[v0] = true;

/* 寻找另外 N-1 个结点 */
for (i = 0; i < N-1; i++) {
min = I; /* 初始最短长度无穷大 */

/* 寻找最短的边 */
for (w = 0; w < N; w++) {
if (!final[w] && dist[w] < min) {
min = dist[w];
v = w;
}
}
final[v] = true; /* 加入新边 */

for (w = 0; w < N; w++) { /* 更新 dist[] 数据 */
if (!final[w] && dist[v] + cost[v][w] < dist[w]) {
dist[w] = dist[v] + cost[v][w];
}
}
}

for (i = 0; i < N; i++) { /* 显示到监视器 */
printf("%c->%c: %2d\t", v0 + 65, i + 65, dist[i]);
}
}
这个应该够大了

㈡ c语言问题.

Dijkstra算法可描述如下:
1初始化: S ← { v0 };
dist[j] ← Edge[0][j], j = 1, 2, …, n-1;
// n为图中顶点个数
2求出最短路径的长度:
dist[k] ← min{ dist[i] }, i  V- S ;
S ← S U { k };
3修改:
dist[i] ← min{ dist[i], dist[k] + Edge[k][i] },
对于每一个 i  V- S ;
4判断: 若S = V, 则算法结束,否则转2。
用于计算最短路径的图邻接矩阵类的定义

const int NumVertices = 6; //图中最大顶点个数
class Graph { //图的类定义
private:
int Edge[NumVertices][NumVertices]; //邻接矩阵
int dist[NumVertices]; //最短路径长度数组
int path[NumVertices]; //最短路径数组
int S[NumVertices]; //最短路径顶点集
public:
void ShortestPath ( const int, const int );
int choose ( const int );
};
计算从单个顶点到其它各个顶点的最短路径

void Graph::ShortestPath ( const int n, const int v ){
//Graph是一个具有n个顶点的带权有向图, 各边上
//的权值由Edge[i][j]给出。本算法建立起一个数
//组: dist[j], 0  j < n, 是当前求到的从顶点v到顶点
//j的最短路径长度, 同时用数组path[j], 0  j < n, 存
//放求到的最短路径。
for ( int i = 0; i < n; i++) {
dist[i] = Edge[v][i]; //dist数组初始化
S[i] = 0;
if ( i != v && dist[i] < MAXINT ) path[i] = v;
else path[i] = -1; //path数组初始化
}

S[v] = 1; dist[v] = 0; //顶点v加入顶点集合
//选择当前不在集合S中具有最短路径的顶点u
for ( i = 0; i < n-1; i++ ) {
int min = MAXINT; int u = v;
for ( int j = 0; j < n; j++ )
if ( !S[j] && dist[j] < min )
{ u = j; min = dist[j]; }
S[u] = 1; //将顶点u加入集合S
for ( int w = 0; w < n; w++ ) //修改
if ( !S[w] && Edge[u][w] < MAXINT &&
dist[u] + Edge[u][w] < dist[w] ) {
dist[w] = dist[u] + Edge[u][w];
path[w] = u;
}

Floyd算法的基本思想:
定义一个n阶方阵序列:
A(-1), A(0), …, A(n-1).
其中 A(-1) [i][j] = Edge[i][j];
A(k) [i][j] = min { A(k-1)[i][j],
A(k-1)[i][k] + A(k-1)[k][j] }, k = 0,1,…, n-1
A(0) [i][j]是从顶点vi 到vj , 中间顶点是v0的最短路径的长度, A(k) [i][j]是从顶点vi 到vj , 中间顶点的序号不大于k的最短路径的长度, A(n-1)[i][j]是从顶点vi 到vj 的最短路径长度。

所有各对顶点之间的最短路径

void Graph::AllLengths ( const int n ) {
//Edge[n][n]是一个具有n个顶点的图的邻接矩阵。//a[i][j]是顶点 i 和 j 之间的最短路径长度。path[i][j]
//是相应路径上顶点 j 的前一顶点的顶点号, 在求
//最短路径时图的类定义中要修改path为
//path[NumVertices][NumVertices]。

for ( int i = 0; i < n; i++ ) //矩阵a与path初始化
for ( int j = 0; j < n; j++ ) {
a[i][j] = Edge[i][j];
if ( i <> j && a[i][j] < MAXINT )
path[i][j] = i; // i 到 j 有路径
else path[i][j] = 0; // i 到 j 无路径
}
for ( int k = 0; k < n; k++ ) //产生a(k)及path(k)
for ( i = 0; i < n; i++ )
for ( j = 0; j < n; j++ )
if ( a[i][k] + a[k][j] < a[i][j] ) {
a[i][j] = a[i][k] + a[k][j];
path[i][j] = path[k][j];
} //缩短路径长度, 绕过 k 到 j
}

㈢ c语言编写路线

#include <stdio.h>
#include <malloc.h>
#include<stdlib.h>
#define MAX 100
#define MAXNUM 10000000
int previous[MAX-1];// 求路径需要
int pp[MAX-1];// 记录最短路径
typedef struct graphnode
{
int vexnum; //顶点
int arcnum; //弧
int gra[MAX][MAX]; //邻接矩阵表示0或1
}Graph;
int dist[MAX]; // 最短距离
int arc[MAX][MAX]; // 权

int main()
{
void Dijkstra(Graph *g,int v);
int i,j,n,m;
int v; //源点
Graph *G;
G=(Graph *)malloc(sizeof(Graph));
printf("vexnum:\n");
scanf("%d",&G->vexnum);
printf("arcnum:\n");
scanf("%d",&G->arcnum);
printf("graph:\n");
for(i=0;i<G->vexnum;i++)
for(j=0;j<G->vexnum;j++)
{
scanf("%d",&G->gra[i][j]);
}
for(i=0;i<G->vexnum;i++)
for(j=0;j<G->vexnum;j++)
{
if(G->gra[i][j]==1)
{
printf("请输入%d到%d的权值:",i,j);
scanf("%d",&arc[i][j]);//若有弧 则输入i到j直接的权
}
else
arc[i][j]=MAXNUM;
}
printf("请输入源点v的值:");
scanf("%d",&v);
Dijkstra(G,v);
printf("请输入源点所要到达的点:\n");
scanf("%d",&n);
pp[0]=0;
i=1;
m=n;// 记录n的值
while(n!=0)// 求0到其他点路径
{
pp[i]=previous[n];
i++;
n=previous[n];

}
printf("Path:0 -> ");
for(j=G->vexnum-1;j>=0;j--)
if(pp[j]!=0)
printf(" %d -> ",pp[j]);
printf("%d\n",m);
return 0;

}
void Dijkstra(Graph *G,int v)
{
int previous[MAX-1];
int newdist;
bool sign[MAX];
if(v<0||v>MAX-1)
{
printf("该源点不存在!\n");
return;
}

for(int i=0;i<G->vexnum;i++) //初始化
{
dist[i]=arc[v][i];
sign[i]=false;
if(dist[i]==MAXNUM)
previous[i]=0;
else
previous[i]=v;
}

dist[v]=0;
sign[v]=true;

for(i=0;i<G->vexnum;i++) // i<n-1 待定
{
float temp=MAXNUM;
int u=v; //u 中间变量
for(int j=0;j<G->vexnum;j++)
if((!sign[j])&&(dist[j]<temp))
{
u=j;
temp=dist[j];
}
sign[u]=true;
for(j=0;j<G->vexnum;j++)
if((!sign[j])&&(arc[u][j]<MAXNUM))
{
newdist=dist[u]+arc[u][j];
if(newdist<dist[j])
{
dist[j]=newdist;
previous[j]=u;
}

}
}
for(i=0;i<G->vexnum;i++)
if(dist[i]!=MAXNUM)
printf("从%d到%d的最短路径是 %d\n",v,i,dist[i]);
else
printf("从%d到%d无最短路径\n",v,i);
printf("\n");

}
这是Dijkstra算法求单源最短路径算法 上程序中 假定顶点从0开始,搜索整个图,然后求出0到其他各点的最短距离,存放在dist数组中,main函数后面几行是求0到其他各点的路径 基本上能满足你的要求了

㈣ 求c语言最短路径算法

#include <iostream>
using namespace std;

const int maxnum = 100;
const int maxint = 999999;

// 各数组都从下标1开始
int dist[maxnum]; // 表示当前点到源点的最短路径长度
int prev[maxnum]; // 记录当前点的前一个结点
int c[maxnum][maxnum]; // 记录图的两点间路径长度
int n, line; // 图的结点数和路径数

// n -- n nodes
// v -- the source node
// dist[] -- the distance from the ith node to the source node
// prev[] -- the previous node of the ith node
// c[][] -- every two nodes' distance
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
bool s[maxnum]; // 判断是否已存入该点到S集合中
for(int i=1; i<=n; ++i)
{
dist[i] = c[v][i];
s[i] = 0; // 初始都未用过该点
if(dist[i] == maxint)
prev[i] = 0;
else
prev[i] = v;
}
dist[v] = 0;
s[v] = 1;

// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
// 注意是从第二个节点开始,第一个为源点
for(int i=2; i<=n; ++i)
{
int tmp = maxint;
int u = v;
// 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!s[j]) && dist[j]<tmp)
{
u = j; // u保存当前邻接点中距离最小的点的号码
tmp = dist[j];
}
s[u] = 1; // 表示u点已存入S集合中

// 更新dist
for(int j=1; j<=n; ++j)
if((!s[j]) && c[u][j]<maxint)
{
int newdist = dist[u] + c[u][j];
if(newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
}

// 查找从源点v到终点u的路径,并输出
void searchPath(int *prev,int v, int u)
{
int que[maxnum];
int tot = 1;
que[tot] = u;
tot++;
int tmp = prev[u];
while(tmp != v)
{
que[tot] = tmp;
tot++;
tmp = prev[tmp];
}
que[tot] = v;
for(int i=tot; i>=1; --i)
if(i != 1)
cout << que[i] << " -> ";
else
cout << que[i] << endl;
}

int main()
{
freopen("input.txt", "r", stdin);
// 各数组都从下标1开始

// 输入结点数
cin >> n;
// 输入路径数
cin >> line;
int p, q, len; // 输入p, q两点及其路径长度

// 初始化c[][]为maxint
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
c[i][j] = maxint;

for(int i=1; i<=line; ++i)
{
cin >> p >> q >> len;
if(len < c[p][q]) // 有重边
{
c[p][q] = len; // p指向q
c[q][p] = len; // q指向p,这样表示无向图
}
}

for(int i=1; i<=n; ++i)
dist[i] = maxint;
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=n; ++j)
printf("%8d", c[i][j]);
printf(" ");
}

Dijkstra(n, 1, dist, prev, c);

// 最短路径长度
cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;

// 路径
cout << "源点到最后一个顶点的路径为: ";
searchPath(prev, 1, n);
}

㈤ C语言算法有哪些 并举例和分析

算法大全(C,C++)
一、 数论算法

1.求两数的最大公约数
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

2.求两数的最小公倍数
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;

3.素数的求法
A.小范围内判断一个数是否为质数:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;

B.判断longint范围内的数是否为素数(包含求50000以内的素数表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}

function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}

二、图论算法

1.最小生成树

A.Prim算法:

procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k加入生成树}
{生成树中增加一条新的边k到closest[k]}
{修正各点的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal算法:(贪心)

按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;

procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定义n个集合,第I个集合包含一个元素I}
p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针}
sort;
{对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

2.最短路径

A.标号法求解单源点最短路径:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径}
mark:array[1..maxn] of boolean;

procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1为源点}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {对每一个已计算出最短路径的点}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed算法求解所有顶点对之间的最短路径:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点}
for k:=1 to n do {枚举中间结点}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra 算法:

var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路径上I的前驱结点}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数}
min:=maxint; u:=0; {u记录离1集合最近的结点}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

3.计算图的传递闭包

Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

4.无向图的连通分量

A.深度优先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {对结点I染色}
c[i]:=color;
dfs(I,color);
end;
end;

B 宽度优先(种子染色法)

5.关键路径

几个定义: 顶点1为源点,n为汇点。
a. 顶点事件最早发生时间Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 边活动最早开始时间 Ee[I], 若边I由<j,k>表示,则Ee[I] = Ve[j];
d. 边活动最晚开始时间 El[I], 若边I由<j,k>表示,则El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,则活动j为关键活动,由关键活动组成的路径为关键路径。
求解方法:
a. 从源点起topsort,判断是否有回路并计算Ve;
b. 从汇点起topsort,求Vl;
c. 算Ee 和 El;

6.拓扑排序

找入度为0的点,删去与其相连的所有边,不断重复这一过程。
例 寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.

7.回路问题

Euler回路(DFS)
定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点)

Hamilton回路
定义:经过图的每个顶点仅一次的回路。

一笔画
充要条件:图连通且奇点个数为0个或2个。

9.判断图中是否有负权回路 Bellman-ford 算法

x[I],y[I],t[I]分别表示第I条边的起点,终点和权。共n个结点和m条边。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚举每一条边}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;

10.第n最短路径问题

*第二最短路径:每举最短路径上的每条边,每次删除一条,然后求新图的最短路径,取这些路径中最短的一条即为第二最短路径。
*同理,第n最短路径可在求解第n-1最短路径的基础上求解。

三、背包问题

*部分背包问题可有贪心法求解:计算Pi/Wi
数据结构:
w[i]:第i个背包的重量;
p[i]:第i个背包的价值;

1.0-1背包: 每个背包只能使用一次或有限次(可转化为一次):

A.求最多可放入的重量。
NOIP2001 装箱问题
有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
procere search(k,v:integer); {搜索第k个物品,剩余空间为v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]为前n个物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
实现:将最优化问题转化为判定性问题
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大价值。
F[I,j] 为容量为I时取前j个背包所能获得的最大价值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }

C.求恰好装满的情况数。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;

2.可重复背包

A求最多可放入的重量。
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
状态转移方程为
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大价值。
USACO 1.2 Score Inflation
进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
*实现:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.

C.求恰好装满的情况数。
Ahoi2001 Problem2
求自然数n本质不同的质数和的表达式的数目。
思路一,生成每个质数的系数的排列,在一一测试,这是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此过程计算当前系数的计算结果,now为结果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系数}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,递归搜索效率较高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }

思路三:可使用动态规划求解
USACO1.2 money system
V个物品,背包容量为n,求放法总数。
转移方程:

Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {读入第一个物品的重量}
i:=0; {a[i]为背包容量为i时的放法总数}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定义第一个物品重的整数倍的重量a值为1,作为初值}
for i:=2 to v do
begin
read(now);
update; {动态更新}
end;
writeln(a[n]);

四、排序算法

A.快速排序:

procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {将当前序列在中间位置的数定义为中间数}
repeat
while a[i]<mid do inc(i); {在左半部分寻找比中间数大的数}
while a[j]>mid do dec(j);{在右半部分寻找比中间数小的数}
if i<=j then begin {若找到一组与排序目标不一致的数对则交换它们}
swap(a[i],a[j]);
inc(i);dec(j); {继续找}
end;
until i>j;
if l<j then qsort(l,j); {若未到两个数的边界,则递归搜索左右区间}
if i<r then qsort(i,r);
end;{sort}

B.插入排序:

思路:当前a[1]..a[i-1]已排好序了,现要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}

C.选择排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;

D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比较相邻元素的关系}
end;

E.堆排序:
procere sift(i,m:integer);{调整以i为根的子树成为堆,m为结点总数}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉树中结点i的左孩子为2*i,右孩子为2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]与a[k+1]中较大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {将根放在合适的位置}
end;

procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;

㈥ 求如下有向图的关键路径以及任意两点之间的最短距离

用CPM算法求有向图的关键路径和用Dijkstra算法求有向图的最短路径的C语言程序如下

#include <stdio.h>

#include <malloc.h>

#include <stdlib.h>

#include <string.h>

#define MAX 20

#define INF 32767 // 此处修改最大值

#define nLENGTH(a) (sizeof(a)/sizeof(a[0]))

#define eLENGTH(a) (sizeof(a)/sizeof(char))/(sizeof(a[0])/sizeof(char))

typedef struct _graph{

char vexs[MAX]; // 顶点集合

int vexnum; // 顶点数

int edgnum; // 边数

int matrix[MAX][MAX]; // 邻接矩阵

}Graph, *PGraph;

// 边的结构体

typedef struct _EdgeData{

char start; // 边的起点

char end; // 边的终点

int weight; // 边的权重

}EData;

//指向节点的位置

int point_node(PGraph g,char c){

for(int i=0;i<g->vexnum;i++){

if(g->vexs[i]==c){

return i;

}

}

return -1;

}

PGraph create_graph(int b[][3],char a[],int n,int e){

char c1,c2; //边的2个顶点

PGraph g; //矩阵

g=(PGraph)malloc(sizeof(Graph));

//memset()第一个参数 是地址,第二个参数是开辟空间的初始值,第三个参数是开辟空间的大小

memset(g, 0, sizeof(Graph));

printf("顶点个数: ");//顶点数

g->vexnum=n;

printf("%d ",g->vexnum);

printf("边个数: ");//边数

g->edgnum=e;

printf("%d ",g->edgnum);

//初始化顶点

for(int j=0;j<g->vexnum;j++){

g->vexs[j]=a[j];

}

for(int i=0;i<g->edgnum;i++){

int p1,p2;

c1=char(b[i][0]);

c2=char(b[i][1]);

p1=point_node(g, c1);

p2=point_node(g, c2);

if (p1==-1 || p2==-1){

printf("input error: invalid edge! ");

free(g);

continue;

}

g->matrix[p1][p2]=b[i][2];

}

for(int i=0;i<g->vexnum;i++){

for(int j=0;j<g->vexnum;j++){

if(g->matrix[i][j]==0)

g->matrix[i][j]=INF;

}

}

return g;

}

//关键路径的最短时间

//关键路径法(Critical Path Method,CPM)

void CPM_road(PGraph g){

int i,j;

int a[MAX]={0},b[MAX]={-10};

int max=0;//最长路径

for( i=0;i<g->vexnum;i++){//列数遍历

for( j=0;j<g->vexnum;j++){//行数遍历

//如果g->matrix[j][i]大于0,说明此顶点有前顶点,由前边的遍历可知,前顶点的最长路径a[j],

//加上g->matrix[j][i]的路径就是当前a[i]的路径

if(g->matrix[j][i]!=INF && g->matrix[j][i]+a[j]>max){

max=g->matrix[j][i]+a[j];

a[i]=max;

}

}

max=0;

}

//显示最长路径

printf("第一个顶点到每一个顶点的最长路径:");

printf(" ");

for(i=0;i<g->vexnum;i++){

printf("V%d ",i+1);

}

printf(" ");

for(i=0;i<g->vexnum;i++){

printf("%d ",a[i]);

}

printf(" ");

printf("最后一个顶点到每个顶点的最长路径:");

for( i=g->vexnum-1;i>=0;i--){ //列数遍历

for( j=g->vexnum-1;j>=0;j--){ //行数遍历

//如果g->matrix[j][i]大于0,说明此顶点有前顶点,由前边的遍历可知,前顶点的最长路径a[j],

//加上g->matrix[j][i]的路径就是当前a[i]的路径

if(g->matrix[i][j]!=INF && g->matrix[i][j]+b[j]>max){

max=g->matrix[i][j]+b[j];

b[i]=max;

}

}

max=0;

}

//显示最长路径

printf(" ");

for(i=0;i<g->vexnum;i++){

printf("V%d ",i+1);

}

printf(" ");

for(i=0;i<g->vexnum;i++){

printf("%d ",b[i]);

}

printf(" ");

printf("关键路径: ");

for(i=0;i<g->vexnum;i++){

if(a[i]==a[g->vexnum-1]-b[i]){

printf("V%c ",g->vexs[i]);

}

}

printf(" ");

}

void print_shortest_path(PGraph g,int* distance,int* path,int* used,int start,int end){

// 输出最短距离并打印最短路径

int i = 0, pre, inverse_path[g->vexnum];

char s1[3],s2[3];

sprintf(s1, "V%d", (start+1));

sprintf(s2, "V%d", (end+1));

printf("从%s顶点到%s顶点的最短距离: %d ", s1, s2, distance[end]);

inverse_path[i] = end;

pre = path[end];

if(pre == -1){

printf("没有通路! ");

}else{

while(pre != start){

inverse_path[++i] = pre;

pre = path[pre];

}

inverse_path[++i] = start;

printf("从%s顶点到%s顶点的最短路径: ", s1, s2);

for(; i > 0; i--){

sprintf(s1, "V%d", (inverse_path[i]+1));

printf("%s -> ", s1);

}

sprintf(s1, "V%d", (inverse_path[i]+1));

printf("%s ", s1);

}

return;

}

void shortest_path(PGraph g,int start, int end){ // 基于Dijkstra算法的最短路径函数

int distance[g->vexnum]; // 用于存放起始点到其余各点的最短距离

int path[g->vexnum]; // 用于存放起始点到其余各点最短路径的前一个顶点

int used[g->vexnum] = { 0 }; // 用于标记该顶点是否已经找到最短路径

int i, j, min_node, min_dis, pass_flag = 0;

for(i = 0; i < g->vexnum; i++){

distance[i] = g->matrix[start][i]; // 初始化距离数组

if(g->matrix[start][i] < INF){

path[i] = start; // 初始化路径数组

}else{

path[i] = -1;

}

}

used[start] = 1;

path[start] = start;

for(i = 0; i < g->vexnum; i++){

min_dis = INF;

for(j = 0; j < g->vexnum; j++){

if(used[j] == 0 && distance[j] < min_dis){

min_node = j;

min_dis = distance[j];

pass_flag++; // 标记是否存在通路

}

}

if(pass_flag != 0){

used[min_node] = 1;

for(j = 0; j < g->vexnum; j++){

if(used[j] == 0){

if(g->matrix[min_node][j] < INF && distance[min_node] + g->matrix[min_node][j] < distance[j]){

distance[j] = distance[min_node] + g->matrix[min_node][j];

path[j] = min_node;

}

}

}

}

}

print_shortest_path(g,distance, path, used, start, end);

return;

}

int main(){

int i,j;

PGraph gp;

char a[]={'1', '2', '3', '4', '5', '6', '7'};

int b[][3]={{'1', '2',3},

{'1', '3',2},

{'1', '4',6},

{'2', '4',2},

{'2', '5',4},

{'3', '4',1},

{'3', '6',3},

{'4', '5',1},

{'5', '7',3},

{'6', '7',4}};

int n=nLENGTH(a);

int e=eLENGTH(b);

gp=create_graph(b,a,n,e);

//打印邻接矩阵

printf("邻接矩阵: ");

for (i = 0; i < gp->vexnum; i++){

for (j = 0; j < gp->vexnum; j++)

printf("%d ", gp->matrix[j][i]);

printf(" ");

}

CPM_road(gp);

printf(" ");

for(i=0;i<gp->vexnum;i++){

for(j=0;j<gp->vexnum;j++){

if(i!=j)

shortest_path(gp,i, j);

}

}

return 0;

}


运行结果

㈦ 求助一道数据结构c语言题目:一个人开车从一个地方去另一个地方,有多条路线,给出使总路程最短的路线。

之间搜索最短路算法的C实现,常用的就是Dijkstra(迪杰斯特拉)算法,或者是银行家算法,总之,看懂源代码,基本就可以模仿

阅读全文

与dijkstra算法c语言实现相关的资料

热点内容
连续的批处理命令 浏览:709
安卓怎么进美团 浏览:461
如何使用网页服务器 浏览:387
儿童学珠算好还是手指速算法好 浏览:186
小红书耳机解压视频 浏览:998
华为手机主题app在哪里找 浏览:924
安卓微信怎么没有炸弹 浏览:87
竞彩app哪个正规 浏览:831
绝密文件夹锁怎么破解 浏览:31
程序员骚扰 浏览:385
个人服务器还是云主机划算 浏览:43
linuxu盘启动命令 浏览:747
低溶app是什么 浏览:53
dos命令切盘符 浏览:42
中心城市公共交通机动化出行分担率算法 浏览:409
海南除尘专用压缩机 浏览:431
天气管家app在哪里下载 浏览:618
类编译期做了什么 浏览:785
米家秤用的什么app 浏览:952
程序员出bug死循环 浏览:473