① 粒子群算法解决两个函数的多目标优化的matlab代码。
http://www.doc88.com/p-60698612387.html
http://wenku..com/view/1c27aa8702d276a200292e1e.html
② 对于粒子群算法中求极小值问题,适应度值是越小越好,还是越大越好
这个看你设置吧,如果你直接适应度函数设为目标函数,那么适应度值当然越小越好。如果你把适应度设为目标函数的倒数,那么适应度越大越好。这个都没有关系,你在编程的时候注意看下各代适应度值比较时候的大于还是小于符号就可以了。
③ 我在研究粒子群算法,请问什么叫粒子的适应度值啊
粒子的适应度就是指目标函数的值。一般来说,目标函数的选择由具体问题来决定,假如是求最大值问题,适应度就是函数的大小,适应度当然越大越好。如果是TSP问题,路径的距离就是粒子的适应度。
④ 如何用粒子群优化(PSO)算法实现多目标优化
粒子群算法,也称粒子群优化算法(ParticleSwarmOptimization),缩写为PSO,是近年来发展起来的一种新的进化算法(EvolutionaryAlgorithm-EA)。PSO算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)和“变异”(Mutation)操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。
⑤ 请问粒子群算法和多目标粒子群算法有什么区别吗
一般就是在跟新粒子位置后,对粒子进行离散点处理。 比如: 你的粒子的离散点是0到9的整数。 那么对每个粒子更新位置后,比如是在(0,1)范围内的随机数。那么就(0,0.1)范围令其值为0;(0.1,0.2)范围令其值为1;............(0.9.1)范围令其值为9。 当然初始位置值也需要这样处理。
⑥ 求大神给出基于粒子群算法的多目标搜索算法的完整程序。。。从目标函数到最后。。
%% 该函数演示多目标perota优化问题
%清空环境
clc
clear
load data
%% 初始参数
objnum=size(P,1); %类中物品个数
weight=92; %总重量限制
%初始化程序
Dim=5; %粒子维数
xSize=50; %种群个数
MaxIt=200; %迭代次数
c1=0.8; %算法参数
c2=0.8; %算法参数
wmax=1.2; %惯性因子
wmin=0.1; %惯性因子
x=unidrnd(4,xSize,Dim); %粒子初始化
v=zeros(xSize,Dim); %速度初始化
xbest=x; %个体最佳值
gbest=x(1,:); %粒子群最佳位置
% 粒子适应度值
px=zeros(1,xSize); %粒子价值目标
rx=zeros(1,xSize); %粒子体积目标
cx=zeros(1,xSize); %重量约束
% 最优值初始化
pxbest=zeros(1,xSize); %粒子最优价值目标
rxbest=zeros(1,xSize); %粒子最优体积目标
cxbest=zeros(1,xSize); %记录重量,以求约束
% 上一次的值
pxPrior=zeros(1,xSize);%粒子价值目标
rxPrior=zeros(1,xSize);%粒子体积目标
cxPrior=zeros(1,xSize);%记录重量,以求约束
%计算初始目标向量
for i=1:xSize
for j=1:Dim %控制类别
px(i) = px(i)+P(x(i,j),j); %粒子价值
rx(i) = rx(i)+R(x(i,j),j); %粒子体积
cx(i) = cx(i)+C(x(i,j),j); %粒子重量
end
end
% 粒子最优位置
pxbest=px;rxbest=rx;cxbest=cx;
%% 初始筛选非劣解
flj=[];
fljx=[];
fljNum=0;
%两个实数相等精度
tol=1e-7;
for i=1:xSize
flag=0; %支配标志
for j=1:xSize
if j~=i
if ((px(i)<px(j)) && (rx(i)>rx(j))) ||((abs(px(i)-px(j))<tol)...
&& (rx(i)>rx(j)))||((px(i)<px(j)) && (abs(rx(i)-rx(j))<tol)) || (cx(i)>weight)
flag=1;
break;
end
end
end
%判断有无被支配
if flag==0
fljNum=fljNum+1;
% 记录非劣解
flj(fljNum,1)=px(i);flj(fljNum,2)=rx(i);flj(fljNum,3)=cx(i);
% 非劣解位置
fljx(fljNum,:)=x(i,:);
end
end
%% 循环迭代
for iter=1:MaxIt
% 权值更新
w=wmax-(wmax-wmin)*iter/MaxIt;
%从非劣解中选择粒子作为全局最优解
s=size(fljx,1);
index=randi(s,1,1);
gbest=fljx(index,:);
%% 群体更新
for i=1:xSize
%速度更新
v(i,:)=w*v(i,:)+c1*rand(1,1)*(xbest(i,:)-x(i,:))+c2*rand(1,1)*(gbest-x(i,:));
%位置更新
x(i,:)=x(i,:)+v(i,:);
x(i,:) = rem(x(i,:),objnum)/double(objnum);
index1=find(x(i,:)<=0);
if ~isempty(index1)
x(i,index1)=rand(size(index1));
end
x(i,:)=ceil(4*x(i,:));
end
%% 计算个体适应度
pxPrior(:)=0;
rxPrior(:)=0;
cxPrior(:)=0;
for i=1:xSize
for j=1:Dim %控制类别
pxPrior(i) = pxPrior(i)+P(x(i,j),j); %计算粒子i 价值
rxPrior(i) = rxPrior(i)+R(x(i,j),j); %计算粒子i 体积
cxPrior(i) = cxPrior(i)+C(x(i,j),j); %计算粒子i 重量
end
end
%% 更新粒子历史最佳
for i=1:xSize
%现在的支配原有的,替代原有的
if ((px(i)<pxPrior(i)) && (rx(i)>rxPrior(i))) ||((abs(px(i)-pxPrior(i))<tol)...
&& (rx(i)>rxPrior(i)))||((px(i)<pxPrior(i)) && (abs(rx(i)-rxPrior(i))<tol)) || (cx(i)>weight)
xbest(i,:)=x(i,:);%没有记录目标值
pxbest(i)=pxPrior(i);rxbest(i)=rxPrior(i);cxbest(i)=cxPrior(i);
end
%彼此不受支配,随机决定
if ~( ((px(i)<pxPrior(i)) && (rx(i)>rxPrior(i))) ||((abs(px(i)-pxPrior(i))<tol)...
&& (rx(i)>rxPrior(i)))||((px(i)<pxPrior(i)) && (abs(rx(i)-rxPrior(i))<tol)) || (cx(i)>weight) )...
&& ~( ((pxPrior(i)<px(i)) && (rxPrior(i)>rx(i))) ||((abs(pxPrior(i)-px(i))<tol) && (rxPrior(i)>rx(i)))...
||((pxPrior(i)<px(i)) && (abs(rxPrior(i)-rx(i))<tol)) || (cxPrior(i)>weight) )
if rand(1,1)<0.5
xbest(i,:)=x(i,:);
pxbest(i)=pxPrior(i);rxbest(i)=rxPrior(i);cxbest(i)=cxPrior(i);
end
end
end
%% 更新非劣解集合
px=pxPrior;
rx=rxPrior;
cx=cxPrior;
%更新升级非劣解集合
s=size(flj,1);%目前非劣解集合中元素个数
%先将非劣解集合和xbest合并
pppx=zeros(1,s+xSize);
rrrx=zeros(1,s+xSize);
cccx=zeros(1,s+xSize);
pppx(1:xSize)=pxbest;pppx(xSize+1:end)=flj(:,1)';
rrrx(1:xSize)=rxbest;rrrx(xSize+1:end)=flj(:,2)';
cccx(1:xSize)=cxbest;cccx(xSize+1:end)=flj(:,3)';
xxbest=zeros(s+xSize,Dim);
xxbest(1:xSize,:)=xbest;
xxbest(xSize+1:end,:)=fljx;
%筛选非劣解
flj=[];
fljx=[];
k=0;
tol=1e-7;
for i=1:xSize+s
flag=0;%没有被支配
%判断该点是否非劣
for j=1:xSize+s
if j~=i
if ((pppx(i)<pppx(j)) && (rrrx(i)>rrrx(j))) ||((abs(pppx(i)-pppx(j))<tol) ...
&& (rrrx(i)>rrrx(j)))||((pppx(i)<pppx(j)) && (abs(rrrx(i)-rrrx(j))<tol)) ...
|| (cccx(i)>weight) %有一次被支配
flag=1;
break;
end
end
end
%判断有无被支配
if flag==0
k=k+1;
flj(k,1)=pppx(i);flj(k,2)=rrrx(i);flj(k,3)=cccx(i);%记录非劣解
fljx(k,:)=xxbest(i,:);%非劣解位置
end
end
%去掉重复粒子
repflag=0; %重复标志
k=1; %不同非劣解粒子数
flj2=[]; %存储不同非劣解
fljx2=[]; %存储不同非劣解粒子位置
flj2(k,:)=flj(1,:);
fljx2(k,:)=fljx(1,:);
for j=2:size(flj,1)
repflag=0; %重复标志
for i=1:size(flj2,1)
result=(fljx(j,:)==fljx2(i,:));
if length(find(result==1))==Dim
repflag=1;%有重复
end
end
%粒子不同,存储
if repflag==0
k=k+1;
flj2(k,:)=flj(j,:);
fljx2(k,:)=fljx(j,:);
end
end
%非劣解更新
flj=flj2;
fljx=fljx2;
end
%绘制非劣解分布
plot(flj(:,1),flj(:,2),'o')
xlabel('P')
ylabel('R')
title('最终非劣解在目标空间分布')
disp('非劣解flj中三列依次为P,R,C')
⑦ 分析标准粒子群算法的不足及改进的方法
一个以上的目标,以优化
相对传统的多目标优化方法在解决多目标问题,PSO具有很大的优势。首先,PSO算法和高效的搜索功能,有利于在这个意义上,多目标的最优解;其次,PSO代表了整个解决方案的人口集固有的并行性,同时搜索多个非劣解,所以容易搜索多个Pareto最佳的解决方案;此外,PSO通用的适合处理所有类型的目标函数和约束条件,PSO容易与传统相结合的方法,和然后提出了有效的方法来解决一个具体的问题。 PSO本身,为了更好地解决多目标优化问题,必须解决的问题的全局最优粒子和个人选择的最优粒子。为全局最优粒子的选择,一方面,该算法具有更好的收敛速度,另一方面帕累托边界分散体的溶液中。如果在最佳的单个颗粒的选择,需要较少的计算复杂性,并且是仅由较少数量的比较非
劣解更新。迄今为止,基于PSO的多目标优化,主要有以下
思路:
(1)向量法和加权方法。文献[20]的固定权重法,自适应权重法和向量评估方法的第一次,PSO解决MO问题。然而,对于一个给定的优化问题,权重的方法通常是很难获得一组合适的权重向量评价方法MO的问题是,往往无法得到满意的解决方案。
(2)基于Pareto方法。 [21]帕累托排序机制和PSO相结合,处理的问题,多目标优化,Pareto排序方法来选择一组的精英,和轮盘赌选择全局最优粒子。虽然轮盘赌选择机制,使所有的帕累托个人选择的概率是一样的,但实际上只有少数人的选择的概率就越大,因此不利于保持种群多样性;文献[22]通过引入在PSO帕累托竞争机制,选择全局最优粒子的颗粒知识基础。候选个人随机选自人口比较集进行比较,以确定非劣解,该算法的成功取决于比较集的大小的参数设置。如果这个参数是太小了,选择的过程,从人口的非劣效性个人可能是太小了,如果这个参数是太大,它可能会出现过早收敛。
(3)距离的方法。 [23],被分配的各个的当前的解决方案之间的距离的基础上Pa2reto的解决方案,其适应值,以便选择全局最优粒子。随着距离的方法需要被初始化潜在的解决方案,如果初始电位值太大,不同的解决方案,以适应不同的值并不显着。这将导致在选择压力太小或个别均匀分布,导致在PSO算法收敛速度非常慢。
(4)附近的“。文献[24]提出了动态邻域的选择策略,为优化目标的定义,目标,和其他所有的目标定义的目标附近,然后选择全局最优粒子的动态邻域的策略,但该方法更敏感的目标函数的优化目标选择和附近的排序。
(5)多组法。文献[25]的人口划分成多个子群,以及每个子群PSO算法,通过搜索Pareto最优解的各种子群之间的信息交流。然而,由于需要增加的粒子的数量增加的计算量。
(6)非排名的方法。 [26]使用非主导的排序选择全局最优的粒子。整个人口,粒子的个人最好成绩粒子和它的后代,有利于提供一个适当的选择压力,小生境技术,以增加种群多样性。比较所有粒子的个人最好成绩颗粒在整个人群遗传给后代,但是,由于其本身的性质是不利于人口的多样性,容易形成早熟。此外,文献[27]最大最小策略,博弈论引入PSO解决多MO。最大最小策略,以确定粒子的适应值,可以判断帕累托最优的解决方案,而不需要集群和小生境技术。
2约束优化
在最近几年也取得了一些进展,PSO算法在约束最优化。基于PSO-的约束优化工作分为两种类型:①罚函数法;②设计特定的进化操作或约束修正系数。 [28]采用罚函数法,采用非固定多段映射罚函数将约束的优化问题,然后利用PSO解决问题的转换后,模拟结果表明,该算法相对进化策略和遗传算法的优势,但罚函数的设计过于复杂,不利于解决;文献[29],一个可行的解决方案,保留策略处理约束,即,一方面要更新所有的颗粒的存储区域中到只保留可行的解决方案,在另一方面在初始化阶段的所有的颗粒从一个可行的解决方案的空间值?初始的可行的解决方案空间,然而,是难以确定的很多问题,文献[30 ]提出的多层信息共享策略粒子群与约束原则来处理,根据约束矩阵多层Pareto排序机制的微粒,从而一些微粒,以确定个人的搜索方向的其余。
3离散优化为离散优化解决方案空间是离散点的集合,而不是连续PSO解决离散优化问题,必须予以纠??正的速度和位置更新公式,或变形。基于PSO的离散优化可分为以下三类:
速度(1)的位置变化的概率。 [31]首先提出了离散二进制PSO。二进制粒子的位置编码器,Sigmoid函数,速度约束在[0,1],代表粒子的概率立场;法[32] [31]在文献
提高的地址更换安排。安排更换颗粒,速度是指根据两个粒子的相似性,以确定粒子的位置变化也引入突变操作,以防止陷入局部极小的最优粒子的概率。
(2)重新定义的PSO的操作。 [33]通过重新定义粒子的位置,速度,和他们的加法和减法乘法运算,提出了一种新的离散粒子群,并为解决旅行商问题。虽然该算法是有效的,但它提供了一种新的思维方式求解组合优化问题。
(3)连续PSO离散的情况下。 [34]采用连续PSO,解决分布式计算机任务的分配问题。于实数被转换为一个正整数,和符号的实数部分和小数部分的
分除去。结果表明,在溶液中的质量和速度的方法的算法是优于遗传算法。
4动态优化
在许多实际工程问题,优化环境是不确定的,或动态。因此,优化算法必须有能力与环境的动态变化做出相应的调整,以最佳的解决方案,该算法具有一定的鲁棒性。 [35]首次提出了PSO跟踪动态系统[36]提出了自适应PSO自动跟踪动态系统的变化,种群粒子检测方法和粒子重新初始化PSO系统变化的跟踪能力增强;文献[37]迅速变化的动态环境中,在粒子速度更新公式的变化条目的增加,消除了需要在环境中的变化来检测,可以跟踪环境处理。虽然该研究少得多,但不容质疑的,是一个重要的研究内容。
粒子群算法的MATLAB程序
初始化粒子群;
对于每个粒子
计算他们的身体健康;
如果(健身优于粒子的历史最好值)
历史最好的个人裨锡更新;
如果选择当前粒子群粒子;(当前的最优粒子比历史最好粒子组)
与目前最好的粒子更新PG组;对于每个粒子
更新粒子类型①速度;
更新的位置粒子类型②;
完
虽然还没有达到最大迭代次数,或不符合的最小误差。
⑧ 怎么用matlab中的粒子群算法求解多目标优化问题
不知道你所说的多目标是指什么,据我的理解,既然有个目标函数,那么多目标可以在目标函数那里表示,我最近也在做这个粒子群算法, 下面是我的vc++6.0代码,改造了一下基本粒子群,求路径的.. #include #include #include using namespace std; d
⑨ 多目标优化算法有哪些
主要内容包括:多目标进化算法、多目标粒子群算法、其他多目标智能优化算法、人工神经网络优化、交通与物流系统优化、多目标生产调度和电力系统优化及其他。