导航:首页 > 源码编译 > a算法的限制的解释

a算法的限制的解释

发布时间:2024-12-16 20:13:01

Ⅰ A*算法(启发式算法)

A*算法
这是我写的第一篇有关A*算法的文章,写得比较简洁,我决定再写一篇,补充一下对A*算法的理解。

A*算法把 Dijkstra算法 (靠近初始点的结点)和 BFS算法 (靠近目标点的结点)的信息块结合起来。
g(n)表示从初始结点到任意结点n的实际代价
h(n)表示从结点n到目标点的启发式评估代价

(1)h(n)=0,一种极端情况
如果h(n)=0,则只有g(n)起作用,此时A*演变成Dijkstra算法,这保证能找到最短路径,但效率不到,因为得不到启发。
(2)h(n)<实际代价
如果h(n)经常都比从n移动到目标的实际代价小(或者相等),则A*保证能找到一条最短路径。h(n)越小,A*扩展的结点越多,运行就越慢。
(3)h(n)=实际代价
如果h(n)精确地等于从n移动到目标的实际代价,则A*将会仅仅寻找最佳路径而不扩展别的任何结点,这会运行得非常快。尽管这不可能在所有情况下发生,你仍可以在一些特殊情况下让它们精确地相等(指让h(n)精确地等于实际代价)。只要提供完美的信息,A*就会运行得很完美。
(4)h(n)>实际代价
如果h(n)有时比从n移动到目标的实际代价大,则A*不能保证找到一条最短路径,但它运行得更快。
(5)h(n)>>实际代价(>>远大于),另一种极端情况
如果h(n)比g(n)大很多,则只有h(n)起作用,A*演变成BFS算法。

数组?链表?
在Open集上主要有三种操作:查找优先级最高的结点&删除结点、查找相邻结点是否在集合中、插入新结点
在Close集上主要有两种操作:查找相邻结点是否在集合中、插入新节点
(1)未排序数组或链表
最简单的数据结构是未排序数组或链表。查找结点,花费O(N);插入结点,花费O(1);删除结点,花费O(N)
(2)排序数组
为了加快删除操作,可以对数组进行排序。查找结点,变成O(logN),因为可以使用折半查找;插入结点,花费O(N);查找和删除优先级最高的结点,花费O(1)
(3)排序链表
在排序数组中,插入操作很慢。如果使用链表则可以加速该操作。查找结点,花费O(N);插入结点,花费O(1),但查找插入位置,需要花费O(N)
(4)哈希表
使用哈希表,查找结点,花费O(1);插入结点,花费O(1);查找和删除优先级最高的结点,花费O(N)

https://blog.csdn.net/coutamg/article/details/53923717#!/_alzvzu0wsphb4nstr5bbro1or

Ⅱ 人工智能 A*算法原理

A 算法是启发式算法重要的一种,主要是用于在两点之间选择一个最优路径,而A 的实现也是通过一个估值函数

上图中这个熊到树叶的 曼哈顿距离 就是蓝色线所表示的距离,这其中不考虑障碍物,假如上图每一个方格长度为1,那么此时的熊的曼哈顿距离就为9.
起点(X1,Y1),终点(X2,Y2),H=|X2-X1|+|Y2-Y1|
我们也可以通过几何坐标点来算出曼哈顿距离,还是以上图为例,左下角为(0,0)点,熊的位置为(1,4),树叶的位置为(7,1),那么H=|7-1|+|1-4|=9。

还是以上图为例,比如刚开始熊位置我们会加入到CLOSE列表中,而熊四周它可以移动到的点位我们会加入到OPEN列表中,并对熊四周的8个节点进行F=G+H这样的估值运算,然后在这8个节点中选中一个F值为最小的节点,然后把再把这个节点从OPEN列表中删除,加入到Close列表中,从接着在对这个节点的四周8个节点进行一个估值运算,再接着依次运算,这样说大家可能不是太理解,我会在下边做详细解释。

从起点到终点,我们通过A星算法来找出最优路径

我们把每一个方格的长度定义为1,那从起始点到5位置的代价就是1,到3的代价为1.41,定义好了我们接着看上图,接着运算

第一步我们会把起始点四周的点加入OPEN列表中然后进行一个估值运算,运算结果如上图,这其中大家看到一个小箭头都指向了起点,这个箭头就是指向父节点,而open列表的G值都是根据这个进行计算的,意思就是我从上一个父节点运行到此处时所需要的总代价,如果指向不一样可能G值就不一样,上图中我们经过计算发现1点F值是7.41是最小的,那我们就选中这个点,并把1点从OPEN列表中删除,加入到CLOSE列表中,但是我们在往下运算的时候发现1点的四周,2点,3点和起始点这三个要怎么处理,首先起始点已经加入到了CLOSE,他就不需要再进行这种运算,这就是CLOSE列表的作用,而2点和3点我们也可以对他进行运算,2点的运算,我们从1移动到2点的时候,他需要的代价也就是G值会变成2.41,而H值是不会变的F=2.41+7=9.41,这个值我们发现大于原来的的F值,那我们就不能对他进行改变(把父节点指向1,把F值改为9.41,因为我们一直追求的是F值最小化),3点也同理。

在对1点四周进行运算后整个OPEN列表中有两个点2点和3点的F值都是7.41,此时我们系统就可能随机选择一个点然后进行下一步运算,现在我们选中的是3点,然后对3点的四周进行运算,结果是四周的OPEN点位如果把父节点指向3点值时F值都比原来的大,所以不发生改变。我们在看整个OPEN列表中,也就2点的7.41值是最小的,那我们就选中2点接着运算。

我们在上一部运算中选中的是1点,上图没有把2点加入OPEN列表,因为有障碍物的阻挡从1点他移动不到2点,所以没有把2点加入到OPEN列表中,整个OPEN列表中3的F=8是最小的,我们就选中3,我们对3点四周进行运算是我们发现4点经过计算G=1+1=2,F=2+6=8所以此时4点要进行改变,F变为8并把箭头指向3点(就是把4点的父节点变为3),如下图

我们就按照这种方法一直进行运算,最后 的运算结果如下图

而我们通过目标点位根据箭头(父节点),一步一步向前寻找最后我们发现了一条指向起点的路径,这个就是我们所需要的最优路径。 如下图的白色选中区域

但是我们还要注意几点

最优路径有2个

这是我对A*算法的一些理解,有些地方可能有BUG,欢迎大家指出,共同学习。

Ⅲ A*算法优化

A算法是游戏中路径搜索的常见算法。Dijkstra是最短路径的经典算法,A算法的思路基本上和Dijkstra算法一致,在Dijkstra算法的基础上增加了启发函数,也就是:

f(n) = g(n) + h(n)

其中,n是路径上某一点,g(n)是从出发点到该点的cost,h(n)是关于该点的启发函数,通常是对从该点到目标花费的一个估计,例如到目标的直线距离或者曼哈顿距离。 A算法每次选择f(n)最小的点,然后更新所有g(n)。
如果你明白做源Dijkstra算法,那么在这里h(n) = 0 的话,A算法就和Dijkstra算法一样了。
本文不详细讲橘羡解A算法,需要详细了解A算法的具体过程的,参见以下两篇文章:

理解A*算法的具体过程
A*算法详解

A*算法优化的关键在于h(n)的选择。 一个启发函数h(n)被称为admissible的,是指h(n)的估计,不会超过节点N到目标的实际花费。
如果h(x)满足以下条件,h(x)被称为单调的(monotone, or consistent)。 对于任意一条边(x,y),
h(x) <= d(x,y) + h(y)
其中d(x,y)是(x,y)的长度

如果满足这个条件,就意味着没有任何节点需要被处理多次,也就是说,在Dijkstra算法中,新加入一个节点会导致已添加节点中cost降低的纯伍态情况不会存在,也就不需要去更新已添加节点(称为close set)。

如果一个启发函数是单调的,那么该启发函数一定是admissible的。如果该启发函数是admissible的,那么可以证明A*在同类算法中搜寻到最短的路径。

问题出在这里:如果我们更在意的是搜索的时间空间花费,而不是最优结果,那么A*算法就有优化空间。所以我们放松要求,修改我们的启发函数,使得我们搜寻到的路径不会比最佳路径差太多,就是优化算法,称为ε-admissible算法。

有多种ε-admissible算法,在此只举例最简单直接的一种: 加权A*(静态加权)算法。

假如ha(n)是一个admissible的启发函数,我们选取新的启发函数hw(n) = ε ha(n),其中ε>1 作为启发函数。就可以在某种程度上进行优化。 下图1是使用ha(n)作为启发式算法,下图2是使用hw(n)作为启发式算法,其中ε取5.

图1:ha(x)作为启发算法

图2:hn(x)作为启发算法

可以看出,ha(n)可以找到最小路径,但是多了许多无用的搜索;而hw(n)找到的不是最优路径,但是减少了大量无用搜索。
其他的优化算法思路类似都是在于启发函数的选择。详见参考文献。

参考文献:
https://en.wikipedia.org/wiki/A*_search_algorithm#Admissibility_and_optimality https://en.wikipedia.org/wiki/Consistent_heuristic

Ⅳ A*算法用于路径规划,有什么缺点

缺点:A*算法通过比较当前路径栅格的8个邻居的启发式函数值F来逐步确定下一个路径栅格,当存在多个最小值时A*算法不能保证搜索的路径最优。
A*算法;A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好。A*[1] (A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法。注意是最有效的直接搜索算法。之后涌现了很多预处理算法(ALT,CH,HL等等),在线查询效率是A*算法的数千甚至上万倍。公式表示为: f(n)=g(n)+h(n),其中 f(n) 是从初始点经由节点n到目标点的估价函数,g(n) 是在状态空间中从初始节点到n节点的实际代价,h(n) 是从n到目标节点最佳路径的估计代价。保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。并且如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。如果 估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。

阅读全文

与a算法的限制的解释相关的资料

热点内容
对于分类算法的表述不正确的是 浏览:564
电脑上下了种子怎么解压 浏览:824
海龙工具破解版压缩包解压密码 浏览:833
华为debug命令 浏览:264
算法求n因数自然语言 浏览:149
东莞手板编程招聘 浏览:345
什么软件可以兼容闪退的app 浏览:957
图形函数可以用c语言编译器吗 浏览:810
屌丝程序员电影 浏览:246
dsp在线编程 浏览:332
高清pdf书籍下载网站 浏览:125
rabbitmqphp示例 浏览:513
大中华文库pdf 浏览:868
手机微信文件夹存储在哪里 浏览:384
java取数据库时间 浏览:623
php留言板过滤 浏览:262
pythonolap 浏览:866
广州美团骑手租电池的app叫什么 浏览:1002
用什么app传视频最快 浏览:114
mc有什么服务器好玩 浏览:246