导航:首页 > 源码编译 > 贝叶斯算法程序

贝叶斯算法程序

发布时间:2024-12-25 02:38:16

① 朴素贝叶斯(Naive Bayes)算法

朴素贝叶斯算法属于分类算法。发源于古典数学理论,对缺失数据不太敏感,有稳定的分类效率,模型所需估计的参数很少,算法比较简单。

朴素贝叶斯算法 贝叶斯 是说明这个算法和贝叶斯定理有联系,而 朴素 是因为处理实际的需要,做了一个简化—— 假设每个特征之间是独立的 (如果研究的对象互相之间的影响很强,计算概率时考虑的问题非常复杂,做了独立假设,就可以分解后进行研究),这是这个算法模型与贝叶斯定理的区别。

将 x 作为特征,y 作为类别,那公式左边的 P(yi|x)就是说在知道特征 x 的情况下,计算这个特征属于 yi 类的可能性大小。通过比较找出这个可能性的值最大的属于哪一类,就将特征 x 归为这一类。

第3步的计算就是整个关键所在,计算依据是上面的贝叶斯公式。

对于每一个类的概率计算,公式右边的分母的 P(x)都是相同的,所以可以不计算(我们只是对最终结果进行比较,不影响)。

P(yi)也称为先验概率,是 x 属于 yi 类的一个概率,这个是通过历史信息得到的(在程序实现的时候,历史信息或者说先验信息就是我们的训练数据集),我们通过对训练样本数据进行统计,分别算出 x 属于 y1,y2,...,yn 类的概率是多少,这个是比较容易得到的。

所以,主要是求 P(x|yi)= P(a1,a2,...,am|yi)

这个时候对于贝叶斯模型的 朴素 的独立性假设就发挥作用了(综合的计算变成了独立计算后的综合,简化模型,极大地减少了计算的复杂程度):

P(a1,a2,...,am|yi) = P(a1|yi)P(a2|yi)...P(am|yi)

所以计算想要得到的东西如下:

一个程序简例

② 如何理解贝叶斯估计

根据贝叶斯公式,进行统计推断,
在垃圾邮件分类方面应用很广,方法简单,具有很好的稳定性和健壮性

③ 贝叶斯公式通俗理解

贝叶斯公式:

推导之前,我们需要先了解一下 条件概率 :

已知数据如下:

P(A) 表是人为光头的概率,P(B) 表示为人为程序员的概率。
则 P(A) = 4/9 ,P(B) = 3/9 = 1/3 ,P(A, B) = 2/9
P(A|B) 则为程序员中光头的概率为:2/3
P(B|A) 则为光头中程序员的概率:2/4 = 1/2
则按照条件概率:P(A|B) = P(A, B)/ P(B) = 2/3
贝叶斯公式:P(A|B) = P(A)·P(B|A)/P(B) = 2/3
通过上面连个公式推导发现 条件概率 和 贝叶斯 的结果是一样的。

阅读全文

与贝叶斯算法程序相关的资料

热点内容
数据库查询系统源码 浏览:617
php5314 浏览:358
完美国际安装到哪个文件夹 浏览:669
什么app可以扫一扫做题 浏览:540
程序员编码论坛 浏览:924
淘点是什么app 浏览:660
中国高等植物pdf 浏览:454
51单片机时间 浏览:182
后台如何获取服务器ip 浏览:267
单片机流水灯程序c语言 浏览:236
程序员第二职业挣钱 浏览:240
运行里怎么输入服务器路径 浏览:843
pythonstepwise 浏览:512
刘一男词汇速记指南pdf 浏览:66
php认证级别 浏览:371
方舟编译啥时候推送 浏览:1012
php手机验证码生成 浏览:677
哲学思维pdf 浏览:17
凌达压缩机有限公司招聘 浏览:535
weblogic命令部署 浏览:39