导航:首页 > 源码编译 > 贝叶斯算法程序

贝叶斯算法程序

发布时间:2024-12-25 02:38:16

① 朴素贝叶斯(Naive Bayes)算法

朴素贝叶斯算法属于分类算法。发源于古典数学理论,对缺失数据不太敏感,有稳定的分类效率,模型所需估计的参数很少,算法比较简单。

朴素贝叶斯算法 贝叶斯 是说明这个算法和贝叶斯定理有联系,而 朴素 是因为处理实际的需要,做了一个简化—— 假设每个特征之间是独立的 (如果研究的对象互相之间的影响很强,计算概率时考虑的问题非常复杂,做了独立假设,就可以分解后进行研究),这是这个算法模型与贝叶斯定理的区别。

将 x 作为特征,y 作为类别,那公式左边的 P(yi|x)就是说在知道特征 x 的情况下,计算这个特征属于 yi 类的可能性大小。通过比较找出这个可能性的值最大的属于哪一类,就将特征 x 归为这一类。

第3步的计算就是整个关键所在,计算依据是上面的贝叶斯公式。

对于每一个类的概率计算,公式右边的分母的 P(x)都是相同的,所以可以不计算(我们只是对最终结果进行比较,不影响)。

P(yi)也称为先验概率,是 x 属于 yi 类的一个概率,这个是通过历史信息得到的(在程序实现的时候,历史信息或者说先验信息就是我们的训练数据集),我们通过对训练样本数据进行统计,分别算出 x 属于 y1,y2,...,yn 类的概率是多少,这个是比较容易得到的。

所以,主要是求 P(x|yi)= P(a1,a2,...,am|yi)

这个时候对于贝叶斯模型的 朴素 的独立性假设就发挥作用了(综合的计算变成了独立计算后的综合,简化模型,极大地减少了计算的复杂程度):

P(a1,a2,...,am|yi) = P(a1|yi)P(a2|yi)...P(am|yi)

所以计算想要得到的东西如下:

一个程序简例

② 如何理解贝叶斯估计

根据贝叶斯公式,进行统计推断,
在垃圾邮件分类方面应用很广,方法简单,具有很好的稳定性和健壮性

③ 贝叶斯公式通俗理解

贝叶斯公式:

推导之前,我们需要先了解一下 条件概率 :

已知数据如下:

P(A) 表是人为光头的概率,P(B) 表示为人为程序员的概率。
则 P(A) = 4/9 ,P(B) = 3/9 = 1/3 ,P(A, B) = 2/9
P(A|B) 则为程序员中光头的概率为:2/3
P(B|A) 则为光头中程序员的概率:2/4 = 1/2
则按照条件概率:P(A|B) = P(A, B)/ P(B) = 2/3
贝叶斯公式:P(A|B) = P(A)·P(B|A)/P(B) = 2/3
通过上面连个公式推导发现 条件概率 和 贝叶斯 的结果是一样的。

阅读全文

与贝叶斯算法程序相关的资料

热点内容
什么app儿童免费 浏览:582
遗传算法的理解 浏览:800
php删除sql 浏览:841
红进蓝出指标源码 浏览:700
python数据转换列表类型 浏览:717
解压后的文件怎么解开 浏览:175
四川补贴认证下载什么app 浏览:858
android设计风格 浏览:426
视频不支持我的加密 浏览:342
布包pdf 浏览:267
程序员录制课程表 浏览:626
eclipsephp断点调试 浏览:895
虚拟成交量指标源码 浏览:838
什么APP有背单词小组 浏览:43
苹果2g视频怎么加密 浏览:204
人工智能程序员和古典录音师相遇 浏览:415
国产服务器是怎么来的 浏览:116
蓄势待发源码 浏览:458
服务器如何清理log文件 浏览:835
javaawtfont 浏览:627