⑴ 编译原理中,形式语言里怎么区分2型文法与3型文法
二型文法如下:
S->Ac
S->Sc
A->ab
A->aAb
三型文法如下:
S->aS
A->bA
B->cB
B->c
A->Bb
A、2型文法是上下文无关文法,表现在产生式上就是产生式的左部只有一个非终结符;3型文法从广义上讲包括左线形文法、右线形文法和正规文法 。
B、左线形文法产生式的右部要么没有非终结符,如果有非终结符也只能有一个,且必须位于产生式右部的最左端。
C、右线形文法产生式的右部要么没有非终结符,如果有非终结符也只能有一个,且必须位于产生式右部的最右端 。
D、正规文法是右线形文法的一个子集,其产生式右部只有三种情况:
1)空串
2)只有一个终结符
3)只有一个终结符后接一个非终结符
E、所有的3型文法都是2型文法。
⑵ 编译原理问题:求解
E是文法开头。ε代表终结符号(推理中代表终点或结果,程序语言中代表常量等)。E T 这些大写字母一般代表非终结符号(这些代表中间过程,非结果。程序中代表函数等等)。开始是E。因为有个G(E)。E就是文法开始符号。推导就有E开始,它也是一个非终结符(代表函数、或者一个推导过程,类似于程序中的main(c++)、winmain(vc++)、dllmain(dll)等主函数)。
1算术表达式文法:这个文法是一个递归文法。计算机进行逻辑推导时会走很多弯路(类似于遍历一颗树的过程)。为了不让计算机走弯路(提高效率的目的),可以变换为第二种文法。这种文法消除了递归(消除了歧义,类似于后缀表达式),使计算机可以一条直线走到底儿推导出结果。
我也很久没看编译原理了。 呵呵
⑶ 【编译原理】第二章:语言和文法
上述文法 表示,该文法由终结符集合 ,非终结符集合 ,产生式集合 ,以及开始符号 构成。
而产生式 表示,一个表达式(Expression) ,可以由一个标识符(Identifier) 、或者两个表达式由加号 或乘号 连接、或者另一个表达式用括号包裹( )构成。
约定 :在不引起歧义的情况下,可以只写产生式。如以上文法可以简写为:
产生式
可以简写为:
如上例中,
可以简写为:
给定文法 ,如果有 ,那么可以将符号串 重写 为 ,记作 ,这个过程称为 推导 。
如上例中, 可以推导出 或 或 等等。
如果 ,
可以记作 ,则称为 经过n步推导出 ,记作 。
推导的反过程称为 归约 。
如果 ,则称 是 的一个 句型(sentential form )。
由文法 的开始符号 推导出的所有句子构成的集合称为 文法G生成的语言 ,记作 。
即:
例
文法
表示什么呢?
代表小写字母;
代表数字;
表示若干个字母和数字构成的字符串;
说明 是一个字母、或者是字母开头的字符串。
那么这个文法表示的即是,以字母开头的、非空的字符串,即标识符的构成方式。
并、连接、幂、克林闭包、正闭包。
如上例表示为:
中必须包含一个 非终结符 。
产生式一般形式:
即上式中只有当上下文满足 与 时,才能进行从 到 的推导。
上下文有关文法不包含空产生式( )。
产生式的一般形式:
即产生式左边都是非终结符。
右线性文法 :
左线性文法 :
以上都成为正则文法。
即产生式的右侧只能有一个终结符,且所有终结符只能在同一侧。
例:(右线性文法)
以上文法满足右线性文法。
以上文法生成一个以字母开头的字母数字串(标识符)。
以上文法等价于 上下文无关文法 :
正则文法能描述程序设计语言中的多数单词。
正则文法能描述程序设计语言中的多数单词,但不能表示句子构造,所以用到最多的是CFG。
根节点 表示文法开始符号S;
内部节点 表示对产生式 的应用;该节点的标号是产生式左部,子节点从左到右表示了产生式的右部;
叶节点 (又称边缘)既可以是非终结符也可以是终结符。
给定一个句型,其分析树的每一棵子树的边缘称为该句型的一个 短语 。
如果子树高度为2,那么这棵子树的边缘称为该句型的一个 直接短语 。
直接短语一定是某产生式的右部,但反之不一定。
如果一个文法可以为某个句子生成 多棵分析树 ,则称这个文法是 二义性的 。
二义性原因:多个if只有一个else;
消岐规则:每个else只与最近的if匹配。
⑷ 编译原理学习ing(1)词法分析——符号和文法
学习编译原理,首先要理解词法分析的基础概念。它涉及字母表中的符号,如字符、字符串和字符运算(如空串、连接、幂运算、乘积以及闭包)。文法是核心,它由两个非交集的集合——终结符集和非终结符集——以及消配则映射规则组成,规则通过开始符号(来自非终结符集)生成字符串。
文法通常用G(Vn, Vt, P, S)表示,其中Vn和Vt分别代表非终结符集和终结符集,P是产生式集,S是开始符号。例如,一个简单的文法可以表示为A-≥a,这意味着A可以推导为字符a。在文法G的作用下,通过规则推导形成句型,最终得到终结符串——句子,即语言L(G)。文法的等价性意味着不同的文法可能产生相同的语言。
对于文法的分类,上下文无关文法(2型文法)和语法树是关键概念。语法树通过标记和规则描述推导过程,但可能存在二义性,即同一种文法可以产生不同语法树。短语、直接短语和句柄的概念在句型分析中至关重要,用于确认句子是否符合文法。
在词法分析中,通过正则表达式或正规式(正规卖或集)分析输入,将字符转化为tokens,这是程序识别和处理语言的第一步。确定有限自动机(DFA)和非确定有限自动机(NFA)是自动化识别过程的基础,它们以不同的规则描述输入字符的接受方式。NFA与DFA虽然有区别,但它们在识别能力上是等价的,拿棚任何NFA都可以转换为等价的DFA。
⑸ 编译原理中的语法和文法一样吗
编译原理中的语法和文法是不一样的,但却融会贯通。
在计算机科学中,文法是编译原理的基础,是描述一门程序设计语言和实现其编译器的方法。
文法分成四种类型,即0型、1型、2型和3型。这几类文法的差别在于对产生式施加不同的限制。
形式语言,这种理论对计算机科学有着深刻的影响,特别是对程序设计语言的设计、编译方法和计算复杂性等方面更有重大的作用。
多数程序设计语言的单词的语法都能用正规文法或3型文法(3型文法G=(VN,VT,P,S)的P中的规则有两种形式:一种是前面定义的形式,即:A→aB或A→a其中A,B∈VN ,a∈VT*,另一种形式是:A→Ba或A→a,前者称为右线性文法,后者称为左线性文法。正规文法所描述的是VT*上的正规集)来描述。
四个文法类的定义是逐渐增加限制的,因此每一种正规文法都是上下文无关的,每一种上下文无关文法都是上下文有关的,而每一种上下文有关文法都是0型文法。称0型文法产生的语言为0型语言。上下文有关文法、上下文无关文法和正规文法产生的语言分别称为上下文有关语言、上下文无关语言和正规语言。
⑹ 求解编译原理的一道题:设有文法如下
首先要做这题你要知道判别文法类型
包括四个层次:
0-型文法(无限制文法或短语结构文法)包括所有的文法。该类型的文法能够产生所有可被图灵机识别的语言。可被图灵机识别的语言是指能够使图灵机停机的字串,这类语言又被称为递归可枚举语言。注意递归可枚举语言与递归语言的区别,后者是前者的一个真子集,是能够被一个总停机的图灵机判定的语言。
1-型文法(上下文相关文法)生成上下文相关语言。这种文法的产生式规则取如 αAβ -> αγβ 一样的形式。这里的A 是非终结符号,而 α, β 和 γ 是包含非终结符号与终结符号的字串;α, β 可以是空串,但 γ 必须不能是空串;这种文法也可以包含规则 S->ε ,但此时文法的任何产生式规则都不能在右侧包含 S 。这种文法规定的语言可以被线性有界非确定图灵机接受。
2-型文法生成上下文无关语言。这种文法的产生式规则取如 A -> γ 一样的形式。这里的A 是非终结符号,γ 是包含非终结符号与终结符号的字串。这种文法规定的语言可以被非确定下推自动机接受。上下文无关语言为大多数程序设计语言的语法提供了理论基础。
3-型文法(正规文法)生成正规语言。这种文法要求产生式的左侧只能包含一个非终结符号,产生式的右侧只能是空串、一个终结符号或者一个非终结符号后随一个终结符号;如果所有产生式的右侧都不含初始符号 S ,规则 S -> ε 也允许出现。这种文法规定的语言可以被有限状态自动机接受,也可以通过正则表达式来获得。正规语言通常用来定义检索模式或者程序设计语言中的词法结构。
正规语言类包含于上下文无关语言类,上下文无关语言类包含于上下文相关语言类,上下文相关语言类包含于递归可枚举语言类。这里的包含都是集合的真包含关系,也就是说:存在递归可枚举语言不属于上下文相关语言类,存在上下文相关语言不属于上下文无关语言类,存在上下文无关语言不属于正规语言类。
1)本题应该是--上下文无关文法
句子是产生式在推导时“仅仅有终结符”的任何一步
2)%mm%nn 是一个句子
由于下面一题的图我等级不够 不能贴图 发你邮箱
⑺ 编译原理中文法描述的特点
其外A战B皆长短终解符,a是末结符,则G是3型文法或者正轨文法。
少数程序设计语言的双词的语法都能用正规文法或3型文法来描写。
3型文法G=(VN。
先者称为右线性白法。正轨文法所描写的非VT*下的反规散。
四个文法类的定义是逐步增添限造的。
⑻ 编译原理-文法定义
文法定义公式如下:
Chomsky 文法分类将文法分为四种,0型文法( PSG )、1型文法( CSG )、2型文法( CFG )和3型文法( RG )。
又被称为无限制文法(Unrestricted Grammar), 或者短语结构文法(Phrase Structure Grammar)
定义: 对于产生式 α→β , α 至少包含一个非终结符。
为什么要叫无限制文法,明明它要求产生式的左部必须包含一个非终结符。
又被称为上下文有关文法(Context-Sensitive Grammar)
定义:对于产生式 α→β , |α| <= |β| , 仅仅 S→ε 除外
为什么叫做上下文有关文法?
一般情况下,这种产生式的形式为 α1Aα2→α1βα2
又被称为上下文无关文法(Context-Free Grammar)
定义:对任一产生式 α→β ,都有 α∈VN,β∈(VN∪VT)*
为什么叫上下文无关文法?
又被称为正则文法(Regular Grammar,RG),分为右线性(Right Linear)文法和左线性(Left Linear)文法。
定义: 对任一产生式 α→β ,都有 α∈VN,β最多两个字符元素,如果有二个字符必须是(终结符+非终结符)的格式,如果是一个字符,那么必须是终结符。
根据产生式右部非终结符位置不同,分为右线性文法和左线性文法。
可以看出,不同文法就是对产生式进行逐层的限制,所以各个文法是包含关系,即0型文法包含1型文法;1型文法又包含2型文法;2型文法最后包含3型文法。