⑴ 智能优化算法及其应用的目录
第1章绪论1
1.1最优化问题及其分类1
1.1.1函数优化问题1
1.1.2组合优化问题10
1.2优化算法及其分类12
1.3邻域函数与局部搜索13
1.4计算复杂性与NP完全问题14
1.4.1计算复杂性的基本概念14
1.4.2P,NP,NP?C和NP?hard14
第2章模拟退火算法17
2.1模拟退火算法17
2.1.1物理退火过程和Metropolis准则17
2.1.2组合优化与物理退火的相似性18
2.1.3模拟退火算法的基本思想和步骤19
2.2模拟退火算法的马氏链描述20
2.3模拟退火算法的收敛性21
2.3.1时齐算法的收敛性21
2.3.2非时齐算法的收敛性26
2.3.3SA算法渐进性能的逼近26
2.4模拟退火算法关键参数和操作的设计27
2.5模拟退火算法的改进29
2.6并行模拟退火算法31
2.7算法实现与应用32
2.7.1组合优化问题的求解32
2.7.2函数优化问题的求解33
第3章遗传算法36
3.1遗传算法的基本流程36
3.2模式定理和隐含并行性38
3.3遗传算法的马氏链描述及其收敛性40
3.3.1预备知识40
3.3.2标准遗传算法的马氏链描述41
3.3.3标准遗传算法的收敛性42
3.4一般可测状态空间上遗传算法的收敛性44
3.4.1问题描述45
3.4.2算法及其马氏链描述45
3.4.3收敛性分析和收敛速度估计45
3.5算法关键参数与操作的设计47
3.6遗传算法的改进50
3.7免疫遗传算法51
3.7.1引言51
3.7.2免疫遗传算法及其收敛性52
3.7.3免疫算子的机理与构造54
3.7.4TSP问题的免疫遗传算法56
3.8并行遗传算法58
3.9算法实现与应用59
第4章禁忌搜索算法62
4?1禁忌搜索62
4?1?1引言62
4?1?2禁忌搜索示例63
4?1?3禁忌搜索算法流程67
4?2禁忌搜索的收敛性68
4?3禁忌搜索的关键参数和操作70
4?4并行禁忌搜索算法75
4?5禁忌搜索的实现与应用77
4?5?1基于禁忌搜索的组合优化77
4?5?2基于禁忌搜索的函数优化78
第5章神经网络与神经网络优化算法83
5.1神经网络简介83
5.1.1神经网络发展回顾83
5.1.2神经网络的模型84
5.2基于Hopfield反馈网络的优化策略89
5.2.1基于Hopfield模型优化的一般流程89
5.2.2基于Hopfield模型优化的缺陷90
5.2.3基于Hopfield模型优化的改进研究90
5.3动态反馈神经网络的稳定性研究94
5.3.1动态反馈网络的稳定性分析94
5.3.1.1离散对称动态反馈网络的渐近稳定性分析95
5.3.1.2非对称动态反馈网络的全局渐近稳定性分析99
5.3.1.3时延动态反馈网络的全局渐近稳定性分析101
5.3.2动态反馈神经网络的收敛域估计103
5.4基于混沌动态的优化研究概述105
5.4.1基于混沌神经网络的组合优化概述106
5.4.2基于混沌序列的函数优化研究概述108
5.4.3混沌优化的发展性研究109
5.5一类基于混沌神经网络的优化策略110
5.5.1ACNN模型的描述110
5.5.2ACNN模型的优化机制111
5.5.3计算机仿真研究与分析112
5.5.4模型参数对算法性能影响的几点结论116
第6章广义邻域搜索算法及其统一结构118
6.1广义邻域搜索算法118
6.2广义邻域搜索算法的要素119
6.3广义邻域搜索算法的统一结构120
6?4优化算法的性能评价指标123
6?5广义邻域搜索算法研究进展125
6.5.1理论研究概述125
6.5.2应用研究概述128
6.5.3发展性研究129
第7章混合优化策略130
7.1引言130
7.2基于统一结构设计混合优化策略的关键问题131
7.3一类GASA混合优化策略132
7.3.1GASA混合优化策略的构造出发点132
7.3.2GASA混合优化策略的流程和特点133
7.3.3GASA混合优化策略的马氏链描述135
7.3.4GASA混合优化策略的收敛性136
7.3.5GASA混合优化策略的效率定性分析141
第8章混合优化策略的应用143
8.1基于模拟退火?单纯形算法的函数优化143
8.1.1单纯形算法简介143
8.1.2SMSA混合优化策略144
8.1.3算法操作与参数设计145
8.1.4数值仿真与分析146
8.2基于混合策略的控制器参数整定和模型参数估计研究149
8.2.1引言149
8.2.2模型参数估计和PID参数整定149
8.2.3混合策略的操作与参数设计150
8.2.4数值仿真与分析151
8.3基于混合策略的TSP优化研究154
8.3.1TSP的混合优化策略设计154
8.3.2基于典型算例的仿真研究156
8.3.3对TSP的进一步讨论158
8.4基于混合策略的加工调度研究159
8.4.1基于混合策略的Job?shop优化研究159
8.4.1.1引言159
8.4.1.2JSP的析取图描述和编码161
8.4.1.3JSP的混合优化策略设计163
8.4.1.4基于典型算例的仿真研究166
8.4.2基于混合策略的置换Flow?shop优化研究170
8.4.2.1混合优化策略170
8.4.2.2算法操作与参数设计172
8.4.2.3数值仿真与分析172
8.4.3基于混合策略的一类批量可变流水线调度问题的优化研究174
8.4.3.1问题描述及其性质174
8.4.3.2混合优化策略的设计175
8.4.3.3仿真结果和分析177
8.5基于混合策略的神经网络权值学习研究177
8.5.1BPSA混合学习策略178
8.5.2GASA混合学习策略178
8.5.3GATS混合学习策略179
8.5.4编码和优化操作设计180
8.5.5仿真结果与分析180
8.6基于混合策略的神经网络结构学习研究184
8.6.1RBF网络简介184
8.6.2RBF网络结构优化的编码和操作设计184
8.6.3RBF网络结构的混合优化策略186
8.6.4计算机仿真与分析187
8.7基于混合策略的光学仪器设计研究189
8.7.1引言189
8.7.2模型设计190
8.7.3仿真研究和设计结果191
附录Benchmark问题193
A:TSP Benchmark问题193
B: 置换Flow?shop Benchmark问题195
C:Job?shop Benchmark问题211
参考文献217
⑵ 群智能算法及其应用的介绍
群智能算法作为一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能理论研究领域主要有两种算法:蚁群算法和粒子群优化算法。蚁群算法是对蚂蚁群落食物采集过程的模拟,已成功应用于许多离散优化问题。粒子群优化算法也是起源于对简单社会系统的模拟,最初是模拟鸟群觅食的过程,但后来发现它是一种很好的优化工具。
⑶ 群智能算法及其应用的图书目录
前言 1.1 引言
1.2 蚁群算法的基本原理
1.3 粒子群优化算法基本原理
1.4 蚁群算法理论研究现状
1.5 蚁群算法应用研究现状
1.6 粒子群优化算法研究现状
1.7 粒子群算法应用研究现状 2.1 求解一般非线性整数规划的蚁群算法
2.1.1 引言
2.1.2 求解非线性整数规划的蚁群算法
2.1.3 算例分析
2.2 武器—目标分配问题的蚁群算法
2.2.1 引言
2.2.2 WTA问题
2.2.3 武器—目标分配问题的蚁群算法
2.2.4 仿真结果j
2.3 多处理机调度问题的蚁群算法
2.3.1 引言
2.3.2 多处理机调度问题数学模型
2.3.3 解多处理机调度问题模拟退火算法
2.3.4 解多处理机调度问题蚁群算法
2.3.5 算法比较
2.4 可靠性优化的蚁群算法
2.4.1 引言
2.4.2 最优冗余优化模型及解法
2.4.3 可靠性优化的模拟退火算法
2.4.4 可靠性优化的遗传算法
2.4.5 可靠性优化的蚁群算法
2.4.6 算例分析
2.5 求解旅行商问题的多样信息素的蚁群算法
2.5.1 信息素更新的3个模型
2.5.2 多样信息素更新规则
2.5.3 算法测试
2.6 本章小结 3.1 无约束非线性最优化问题
3.2 连续优化问题的信息量分布函数方法
3.3 一种简单的连续优化问题的蚁群算法
3.4 数值分析
3.5 本章小结 4.1 引言
4.2 聚类问题的数学模型
4.3 K均值算法
4.4 解聚类问题的模拟退火算法
4.5 基于巡食思想的蚁群聚类算法
4.6 解聚类问题的新的蚁群算法及数值分析
4.6.1 解聚类问题的蚁群算法
4.6.2 数值分析
4.7 解聚类问题的与K-均值算法混合的蚁群算法及数值分析
4.7.1 解聚类问题的K-均值算法混合的蚁群算法
4.7.2 数值分析
4.8 本章小结 5.1 引言
5.2 解圆排列问题的蚁群模拟退火算法
5.2.1 圆排列问题及与旅行商问题等价
5.2.2 解旅行商问题的模拟退火算法
5.2.3 几种算法的比较
5.2.4 算例分析
5.3 解旅行商问题的模拟退火蚁群算法
5.3.1 混合的基本思想
5.3.2 找邻域解策略
5.3.3 模拟退火蚁群算法
5.3.4 算法测试
5.4 本章小结 6.1 引言
6.2 基本遗传算法
6.3 蚁群算法与遗传算法的混合
6.3.1 混合的基本思想
6.3.2 变异操作
6.3.3 交叉操作
6.3.4 遗传蚁群算法
6.4 算法测试
6.5本章小结 7.1 引言
7.2 混沌及运动特性
7.3 基本蚁群算法改进
7.3.1 混沌初始化
7.3.2 选择较优解
7.3.3 混沌扰动
7.4 混沌蚁群算法
7.5 算法测试
7.6 本章小结 8.1 引言
8.2 最短路的蚁群算法收敛性分析
8.3 仿真算例
8.4 本章小结 9.1 模拟退火思想的粒子群算法
9.1.1 几种模拟退火思想的粒子群算法
9.1.2 算法测试
9.2 混沌粒子群优化算法研究
9.2.1 基本粒子群算法不足
9.2.2 混沌粒子群优化算法
9.2.3 算法测试
9.3 其他改进的粒子群优化算法
9.3.1 杂交PSO算法
9.3.2 协同PSO算法
9.3.3 离散PSO算法
9.4.本章小结 10.1 背包问题的混合粒子群优化算法
10.1.1 背包问题数学模型
10.1.2 解0-1背包问题的混合粒子群算法
10.1.3 数值仿真与分析
10.2 指派问题的交叉粒子群优化算法
10.2.1 求解指派问题的交叉粒子群优化算法
10.2.2 算法测试
10.3 武器—目标分配问题的粒子群优化算法
10.3.1 解武器—目标分配问题的粒子群优化算法
10.3.2 算例分析
10.4 流水作业调度问题的粒子群算法
10.4.1 流水作业调度问题
10.4.2 求解流水作业调度问题混合粒子群算法
10.4.3 算法测试
10.5 非线性整数规划的粒子群优化算法
10.5.1 引言
10.5.2 求解非线性整数规划的粒子群优化算法
10.5.3 算例分析
10.6 本章小结 l1.1 引言
11.2 整数规划形式
1l.3 连续性优化形式
11.4 本章小结 12.1 引言
12.2 求解旅行商问题的混合粒子群优化算法
12.2.1 混合粒子群算法思路
12.2.2 变异操作和交叉操作
12.2.3 混合粒子群算法步骤
12.2.4 算法测试
12.3 求解旅行商问题的粒子群—蚁群算法
12.3.1 粒子群—蚁群算法思想
12.3.2 粒子群—蚁群算法步骤
12.3.3 算法测试
12.4 本章小结 13.1 引言
13.2 PSO算法收敛性分析
13.3 数值仿真
13.4 参数选取
13.5 本章小结 14.1 引言
14.2 鱼群算法基本原理
14.3 人工鱼的行为描述
14.4 鱼群算法的应用
14.5 本章小结 附录A 求解旅行商问题的蚁群基本算法源程序
附录B 计算连续性函数的优化的粒子群程序
附录C 求解旅行商问题的粒子群—蚁群算法的源程序
参考文献
……
⑷ 什么是智能优化算法
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:
Step1:设置参数,初始化种群;
Step2:生成一组解,计算其适应值;
Step3:由个体最有适应着,通过比较得到群体最优适应值;
Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;
各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
(4)群智能优化算法及其应用pdf扩展阅读
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。