导航:首页 > 源码编译 > 正反比例问题的算法

正反比例问题的算法

发布时间:2025-01-03 23:18:51

1. 630÷35的简便计算依据是什么定律

今天是晋级教育陪您走过的
第5265天
于茫茫书海中,为你寻找更适合自己成长的有效资源和那些锲入心灵的文字。与高人交心,轻松学习,把时间留给更重要的人更重要的事。
在平时练习中,掌握简便算法可以给孩子大大节省时间,今天学习哥整理的小学数学简便算法的汇总大全,各位家长教给孩子孩子,让孩子数学计算更快更好!
速算顺口溜
认识钟表
跑的最快是秒针,个儿高高,身材好;

跑的最慢是时针,个儿短短,身材胖。
不高不矮是分针,匀速跑步作用大。
年 月 日
一三五七八十腊(12月),
三十一天永不差;
四六九冬(11月)三十日;
大月、小月的记忆
七前单月大,

八后双月大。
运算顺序歌
打竹板,响连天,各位同学听我言,

今天不把别的表,单把四则运算聊一聊,
混合试题要计算,明确顺序是关键。
同级运算最好办,从左到右依次算,
两级运算都出现,先算乘除后加减。
遇到括号怎么办,小括号里算在先,
中括号里后边算,次序千万不能乱,
每算一步都检查,又对又快喜心间。
"除"的意义
看到"除",圈一圈,

"除"字前面是除数,
"除"字后面被除数,
位置交换别忘了。
多位数读法歌
读数要从高位起,哪位是几就读几,

每级末尾若有零,不必读出记心里,
其他数位连续零,只读一个就可以,
万级末尾加读万,亿级末尾加读亿。
多位数写法歌
写数要从高位起,哪位是几就写几,

哪一位上没单位,用0占位要牢记。
多位数大小比较歌
位数不同比大小,

位数多的大,位数少的小,

位数相同比大小,
高位比起就知道。
100以内的质数口诀
2、3、5、7和11,

13后面是17,

19、23、29,(十九、二三、二十九)
31、37、41,(三一、三七、四十一)
43、47、53,(四三、四七、五十三)
59、61、67,(五九、六一、六十七)
71、73、79,(七 一、七三、七十九)
83、89、97。(八三、八九、九十七)
商中间或末尾有0的除法
我是0,本事大,

除法运算显神通。
不够商1我来补,
有了空位我就坐。
别人要想把我除,
常胜将军总是我。
20以内进位加法

看大数,分小数,凑整十,加零头。
(掌握"凑十法",提倡"递推法"。)
20以内退位减法

20以内退位减,口算方法很简单。
十位退一,个加补,又准又快写得数。
加法意义,竖式计算

两数合并用加法,加的结果叫做和。
数位对齐从右起,逢十进一别忘记。
减法的意义竖式计算
从大去小用减法,减的结果叫做差。
数位对齐从右起,不够减时前位拿。
两位数乘法

两位数乘法并不难,计算过程有三点:
乘数个位要先算,再用十位乘一遍,
乘积末位是关键,要和十位来对端;
两次乘积相加完,层层计算记心间。
混合运算

拿到式题认真看,先算乘除后加碱。
遇到括号要先算,运用规律要改变。
一些数据要记牢,技能技巧掌握好。
加、减法速算

加减法速算你莫愁,拿到算式看清楚,
接近整百凑整数,如下处理无谬误。
加法不足减补数,超余零头加在后。
减法不足加补数,超余零头减在后。
读零法:
万级个级首位有零;
整个万级是零;
上级末尾下级首位都有0;
每级中间有0。
小数加减法

小数加减计算题,以点对准好对齐。
算法如同算整数,算毕把点往下移。
小数乘法

小数乘小数,法则同整数。
定积小数位,因数共同凑。
除数是小数的除法

除数的小数点一划,(去掉小数点)
被除数的小数点搬家,向右搬家搬几位,
除数的小数位数决定它。
四舍五入法儿歌
四舍五入方法好,近似数来有法找;
取到哪位看下位,再同5字作比较;
是5大5前进1,小于5的全舍掉;
等号换成约等号,使人一看就明了。
除数是一位数的除法
除数一位看一位,一位不够看两位,
(一看)
除到哪位商那位,
(二商三乘减)
除数是两位的除法
除数两位看两位,两位不够看三位。
除到哪位商那位,记熟口诀定好位。
试商方法要灵活,不够商"1""0"占位。
余数要比除数小,然后再除下一位。
除数当姐余当妹。 (四比五余)
四则混合运算的运算顺序
括号括号抢第一,
乘法、除法排第二,
最后才算加减法,
谁在前面先算谁。
质数歌

一位质数2、3、5和7,
两位1、3、7、9前加1,
4后3,7前有9,7后1,
3、4、6后加7、1,
2、5、7、8后添9、3,
二十五个质数要记全。
分数乘除法

分数乘法易学懂,分子分母分别乘。
算式意义要搞清,上下能约更轻松。
分数除法方法妙,原来除号变乘号。
除数子母打颠倒,进行计算离不了。
约分

约分、约分,
相乘约净,省时省力。
从上往下,从左到右,
弄清数据,一数不漏。
遇到小数,去点为整,
位数不够,用"零"来补。
互质数的判断

分数比化简,互质数两端。
观察记五点:1和所有数;
相邻两个数;两质必互质。
大数是质数,两数定互质。
小数是质数,大数不倍数。(是小数的)
文字题

叙述形式有三种,读法意义和名称。
解题方法要记清,缩句化简一步算。
标点词语把句断,分层布列莫迟延。
列式方法有两种,可用算式和方程。
比较关系应用题

(一)相差关系
多多少,少多少,都是大减小。
已知条件说比多,比前用加比后减。
已知条件说比少,比前用减比后加。
(二)倍数关系
倍在问题里用除。
倍在已知条件里,
求是前用乘,求是后用除。
(三)求比几倍多(少)几的数
根据倍数分乘数,根据多少分加减。
算除先加减,算乘后加减。
找单位“1”
单位"1"藏得巧,根据分率把你找。
"其中"的前站得好,
"是、占、比"后坐得妙;
"问答式"能找到,补充说明要搞好。
百分数常遇到,不带"率"字有礼貌。
找出一对好朋友,然后确定乘除号。
找单位“1“的说明:
抓住含有不带单位名称的分数的"关键句"、"关键词",进行剖析,这样就解决了不少学生对于分数应用题苦于不知"从何下手"进行分析数量关系。因此,使学生学会迅速找“关键句”、"关键词语"进行剖析数量关系,不仅能有利于掌握解答分数应用题的一般规律,而且也能培养学生的能力,发展学生的智力。先"找"后"析"是六年级学生普遍的学习规律,切记引导学生认真有序地进行分析。
正反比例应用题

正比例,分三段,不变数量在中间,
前后归一分开列,然后等号来连接。
反比例分三段,不变数量在前面,
"如果"分开归总列,再用等号来连接。
速算技巧
低年级组
1.加数“凑整”
几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,把几个数相加。
例:
14+5+6
=14+6+5
=25
2.运用减法性质“凑整”
从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。这种口算比较简便。
例:
50-13-7
=50-(13+7)
=50-20
=30
3.近十、近百、近千的数
计算时可以把接近整十、整百、整千……的数看作整十、整百、整千……的数进行解答。
例:
(1)497+136
497可以近似的看成500,
原式
=(500-3)+136
=500+136-3
=633
(2)760+102
将102看成100+2
原式
=760+100+2
=860+2
=862
4.补数法
利用"补数法",将每个加数加1后凑成20000、2000、200、20进行计算。
例:
19999+1999+199+19
可以看成:
(20000-1)+(2000-1)+(200-1)+(20-1)
=20000+2000+200+20-4
=22220-4
=22216
5.利用加减法交换律:
先加再减的题目也可以做成先减再加。
例:
562+316-62
=562-62+316
=500+316
=816
6.整百数和“零头数”
在计算时可以先把题中的数看成两部分:整百数和"零头数",然后把整百数与整百数相加减,"零头数"与"零头数"相加减。
例:
598+31-296-103
=500+98+31-200-96-100-3
=500-200-100+98-96+31-3
=200+2+28
=230
中年级组 1. 带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 结合律法
加括号法
(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括号法
(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 乘法分配律法
分配法
括号里是加或减运算,与另一个数相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因数的提取。
例如:
9×8+9×2=9×(8+2)
4. 凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。
例如:
99+9=(100-1)+(10-1)
5. 方法五:拆分法
拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
高年级组 1.速算之凑整先算
【点拨】:加法、减法的简便计算中,基本思路是"凑整",根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。
例:
298+304+196+502
【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。
【解答】:
原式=(298+502)+(304+196)=800+500=1300
2.速算之带符号搬家
【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。
例:
464-545+836-455
【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。
思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?
3.速算之拆数凑整
【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。
例:
73.15×9.9
【分析】:把9.9看作10减0.1的差,然后用乘法分配率可简化运算。
【解答】:
原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185
4.速算之等值变化
【点拨】:等值变化是小学数学中重要的思想方法。做加法时候,常常利用这样的恒等变形:一个加数增加,另一个加数就要减少同一个数,它们的和才不变。而减法中,是被减数和减数同时增加或减少相同的数,差才不变。
例:
1234-798
【分析】:把798看作800,减去800后,再在所得差里加上多减去的2.
【解答】:
原式=1234-800+2=436。
5.速算之去括号法
【点拨】:在加减混合运算中,括号前面是"加号或乘号",则去括号时,括号里的运算符号不变;如果括号前面是"减号或除号",则去括号时,括号里的运算符号都要改变。
例:
(4.8×7.5×8.1)÷(2.4×2.5×2.7)
【分析】:首先根据"去括号原则"把括号去掉,然后根据"在同级运算中每个数可带着它前边的符号‘搬家’"进行简算。
【解答】:
原式
=4.8×7.5×8.1÷2.4÷2.5÷2.7
=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)
=2×3×3
=18
6.速算之同尾先减
【点拨】:在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。
【分析】:算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256
7.速算之提取公因数
【点拨】:乘法分配率的反应用,出错率比较高,一般包括三种类型。
(1)直接提取

3.65×23+3.65×77
【分析】:这道题比较简单,利用乘法分配律的反向应用,直接提取公因数3.65就行了。
【解答】:
原式=3.65×(23+77)=3.65×100=365
(2)省略×1的题目
例:
6.3×101-6.3
【分析】:把算式补充完整,6.3×101-6.3×1,学生就很容易看出两个乘法算式中有相同的因数6.3
【解答】:
原式=6.3×(101-1)=6.3×100=630
(3)积不变规律(主要是小数点的变化)
例:6.3×2.57+25.7×0.37
【分析】:可根据“乘法积不变性质,一个因数扩大,一个因数缩小相同的倍数,积不变”把25.7×0.37转化成2.57×3.7,两部分就有了相同的因数2.57,创造出了可以用乘法分配律的条件。
【解答】:
原式=6.3×2.57+2.57×3.7=2.57×(6.3+3.7)=25.7
特殊数的速算技巧
1.不管是几个1的平方,都是有规律的。
2.乘数固定为8,加数递增,就会变成有规律的金字塔型。
3.不管是什么样的二位数乘以11,乘积的百位和个位数字会是被乘数的两个数字,而十位数字则是被乘数的数字相加。
5.九九乘法表里,9x3=27,9x8=72,乘积刚好是颠倒的数字!只有9的乘积是这样。

6.被乘数为9的乘积是有规律的。
7.面对数字超大的平方数,可以按照下面的公式计算。不过只有靠近100的平方数比较好算。
8.分子为一,分母不同的数字相加时,只要找出分母的最小公倍数,把分母变成一样的数字就可以了。
9.被乘数和乘数都很大的话,把被乘数十位数以上的数字以下面的公式运算:十位数以上x(十位数以上+1)为乘积的“头”,被乘积与乘积的个位数字互乘为“尾”,就能算出答案,不过尾数要相加等于10才行。
晋级教育暑期研学营
晋级教育和中国平安联手推出新险种,
为教育培训和托管机构师生安全保驾护航!
想让您的孩子进入自家开的品牌托管班吗?我们一起众筹吧!
好文推荐
如何正确引导孩子做家务?这套操作我给100分 ▽▽▽

小学数学提分方法,教你如何学好数学!建议成绩差的孩子多看几遍 ▽▽▽

晋级教育
带你了解更多托管行业资讯!

2. 如何提高数学解决问题能力

1、培养思维的灵活性

思维的灵活性是指能随事物的变化而随机应变的及时性,以及不过多地受思维定势的影响。如果缺乏思维灵活性,我们的思维就会更加倾向某种具体的方式和方法,很容易出现钻牛角尖的情况,片面追求解决问题的模式化和程序化,长此以往造成思维出现惰性。

擅于从旧的模式和普遍制约条件中脱离出来,找到正确的方向;针对知识可以运用自如,善运用辩证思想来平衡事物之间的关系,具体问题具体分析,懂得变通和调整思路等等,这些是思维灵活性养成的直接表现。

2、培养数学思维的严谨性

思维的严谨性是指考虑问题的严密、有据。要提高学生思维的严谨性,必须严格要求,加强训练。

落实到孩子学习生活中去,就是要求在学习新知识时从基本理念开始,做到在思路清晰的前提条件下稳扎稳打,逐步深入,在这个相对来说缓慢的过程中养成思考问题周密的思维习惯,在进行论证推理时掌握足够的理由作为依据;在练习试题时善于留心题干中的隐蔽条件,详细答题,不吝啬地写出解题思路。

3、培养数学思维的深刻性

思维深刻性是指思维活动的抽象程度和逻辑水平,以及思维活动的深度和难度。相信大多数学生都出现过这样的情况,有时候老师评讲试卷,一听错题的解题过程很容易就懂了,恍然大悟自己居然犯了如此低级的错误,但一旦离开书本和老师就无法领会到解题方法和实质,实现独立解题。这就要求学生在平时的学习中要透过现象看数学的本质,掌握最基础的数学概念,洞察数学对象之间的联系,这是思维深刻与否的主要表现。

阅读全文

与正反比例问题的算法相关的资料

热点内容
怎么把图片转化为文件夹 浏览:126
单独C盘单独加密 浏览:996
制作app需要会什么软件 浏览:632
指令重启linux 浏览:896
eclipse编译器设置 浏览:355
国密ukey加密速度 浏览:37
乌龟蜕皮解压 浏览:883
双匙加密系统分为几个类型 浏览:880
cad2008转换成pdf 浏览:301
戴尔r720服务器如何增加阵列 浏览:504
生日星期几的算法 浏览:418
Linux字符串中数字 浏览:959
程序员你出来我保证不打你 浏览:282
suselinux11下载 浏览:252
android开始界面 浏览:128
如何排查服务器异常重启 浏览:528
怎么解压zip插件的文件 浏览:204
程序员发际线工资图 浏览:779
我的世界服务器如何找回 浏览:861
lua编译成什么需要 浏览:160