linux下编译软件通扰袭用三步曲:
./configure
make
sudo make install
但是编译内核要复杂的多,特别是定制内核,需要根据特定的硬件信息,配置.config文件。可以说.config文件是编译linux内核是否优异的关键。凯裂也可以到github或者码元上寻找有没有类似的型号,找到盯李闭同一型号的电脑可以直接到内核源码目录下,然后依次执行shell命令:make
sudo make install
sudo make moles_install
sudo update-grub2 或者sudo update-grub就可以了
② 有关linux内核移植时的裁剪涉及哪些内容
嵌入式Linux系统的移植主要有U-Boot、Linux内核、文件系统这三部分。
Uboot是在系统上电时开始执行,初始化硬件设备,准备好软件环境,然后才调用Linux操作系统内核。文件系统是Linux操作系统中用来管理用户文件的内核软件层。文件系统包括根文件系统和建立于Flash内存设备之上文件系统。根文件系统包括系统使用的软件和库,以及所有用来为用户提供支持架构和用户使用的应用软件,并作为存储数据读写结果的区域。
可将Linux系统移植过程大致需要分成6个步骤:
1) 准备工作,包括下载源码、建立交叉编译环境等。交叉开发是指在开发主机上安装开发工具,编辑、编译目标板的漏镇升引导程序、内核和文件系统,使返老其能在目标板上运行。
2) 配置和编bootloader(引导装载程序)。通过这段小程序,可以初始化硬件设备、建立内存空间的映射表,从而建立适当的系统硬件环境,为最终调用操作系统内核做好准备。
3) 配置和编译Linux内核,对其进行相应的裁旅乎剪,修改内核以支持相关的硬件设备。
4) 为大容量NAND Flash移植YAFFS文件系统,并将该文件系统加入Linux内核中;
5) 制作RAMdisk来挂载根文件系统。Linux系统中的文件和设备是通过文件系统来组织的。文件系统的存在使得数据和设备可以被有效而透明地存取访问。一个linux的最简根文件系统应该包括支持linux系统正常运行的基本内容,包括系统使用的软件和库,以及所有用来为用户提供基本支持的架构和指令。
6) 烧写、调试系统;如果调试出错,则需要重新配置,返回上述步骤(2)。
③ cygwin下编译linux2.6 kernel失败,求解决方法!
linux2.6内核成功编译
1) 需要的工具:
(1) 模块工具:motils-2.4.21-23.src.rpm
//负责加载模块,在2.4之前是不必独立编译
//模块存放位置:/lib/moles/内核版本目录/kernel/drivers
//lsmod: 查看已加载的模块
(2) 原始码:linux-2.6.9.tar.gz
//选择需要编译的部分: 最新内核2.6.9 支持NTFS分区(只读)
//查看现有系统支持的文件系统: cat /proc/filesystems
//显示内核版本: uname -r
反引号: 当作命令执行 cd /lib/moles/`uname -r`
(3) 能加上补丁:patch-2.6.9.gz
(2) 编译内核的基本步骤
(1) 主要用的编译命令: make make moles_install make install
(2) 基本安装: 安装模块、安装内核
------------------------------------------------------------------------------------------------------------------------------------------------
安装2.6内核的步骤
1 安装模块:(1)执行rpm命令将motils-2.4.21-23.src.rpm
安装到/usr/src/redhat/SOURCES
//rpm -ivh motils-2.4.21-23.src.rpm
//模块工具是RPM包安装后默认安装在/usr/src/redhat/SOURCES
(2)在SOURCIES中含有2个文件mole-init-tools.tar.gz
motils-2.4.21.tar.gz
将mole-init-tools.tar.gz接压
//tar -xzvf mole-init-tools.tar.gz
// motils-2.4.21.tar.gz文件不是主要要用的,不用接压
(3)mole-init-tools.tar.gz文件接压后会有一个
mole-init-tools-3.0-pre1
(4)进入到mole-init-tools-3.0-pre1 目录中
//cd mole-init-tools-3.0-pre1
(5)在mole-init-tools-3.0-pre1 下编译
//./configure --prefix=/moles然后执行make接着
make install到这模块编译完成
//注释:/moles是自己建立的目录,为了以后管理方便
当编译模块完成后在/moles文件下会有bin man sbin这3个目录
(6)开机自动加载模块编辑/etc/profile
//vi /etc/profile
(7)在/etc/profile文件中在添加 export上面一行 PATH=/moles/bin:/moles/sbin:$PATH
(8)进入到模块的目录/moles
进入到其中的sbin中执行一下命令
./generate_modprobe.conf /etc/modprobe.conf
//注释:generate_modprobe.conf在文件sbin中有这个执行命令
/etc/modprobe.conf是自己输入的,是规定的
//以上操作是为了规定init
(9)重新启动计算机,或着source /etc/profile让其本次操作有效
(10)目前开始编译内核将linux-2.6.9.tar.gz接压到/usr/src
//tar -xzvf linux-2.6.9.tar.gz -C /usr/src
(11)接压后在/usr/src会有 linux-2.6.9目录
(12)将 linux-2.6.9做一个连接文件
//创建链接文件: ln -s linux-2.6.9/ linux
//创建链接文件是为了方便管理
(13)进入到创建链接文件linux中开始编译内核
首先运行make menuconfig选择要编译的内容,默认也能
//注释M: 以模块形式加载
*: 直接编译进内核
空: 不做操作,不编译
然后执行make
再后执行moles_install
最后执行make install
到此内核编译完成
④ 谈一谈关于Linux内核编译详解原理
前言:启动盘制作旨在解决内核编译可能导致的系统崩溃问题。内核编译不当时,系统可能无法正常启动,表现为左上角闪烁的标识。启动盘能从外部设备引导系统启动,从而进行系统恢复。
1. 编译前准备:需要一个大于8G的USB启动盘,格式化为ext3、ext4或VFAT。下载一个镜像文件,假设为ubuntu-16.04-64.iso。准备一台装有Linux系统的主机,最好装有Centos或Ubuntu,并具有root权限。
2. 安装引导程序:根据自己的U盘分区(通过lsblk -l查看),为ubuntu-16.04-64.iso和USB存储设备创建挂载点。
3. 创建临时挂载点:为镜像和U盘创建挂载点。
4. 挂载ubuntu-16.04-64.iso:使用-loop选项,使镜像像设备块一样工作,此时挂载点可以看成插入了U盘,其中包含待烧录的系统。
5. 挂载USB存储设备:将USB挂载到指定路径。
6. 复制isolinux文件到U盘:从镜像中复制isolinux文件到U盘。
7. 复制isolinux.cfg:复制镜像中的isolinux.cfg到U盘。
8. 卸载镜像和U盘挂载点:完成复制后,卸载镜像和挂载点。
9. 重启系统,插入USB启动盘,尝试从U盘启动系统。
10. 下载、配置并构建内核:下载内核,检查U盘空间,安装编译所需软件,解压内核包,配置内核,编译内核。
11. 安装内核:安装驱动程序,执行安装命令,复制内核到/boot目录,初始化RAM盘,复制System.map,创建符号链接,重启系统。
12. 测试和调试内核:使用Netconsole配置调试用控制台,更改启动时内核选项,更新grub,初始化Netconsole模块,配置Netconsole选项,设置接受方设置,监控内核崩溃信息。
⑤ 如何编译linux内核
内核,是一个操作系统的核心。它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。Linux作为一个自由软件,
在广大爱好者的支持下,内核版本不断更新。新的内核修订了旧内核的bug,并增加了许多新的特性。如果用户想要使用这些新特性,或想根据自己的系统度身定
制一个更高效,更稳定的内核,就需要重新编译内核。本文将以RedHat Linux 6.0(kernel
2.2.5)为操作系统平台,介绍在Linux上进行内核编译的方法。
一、 下载新内核的源代码
目前,在Internet上提供Linux源代码的站点有很多,读者可以选择一个速度较快的站点下载。笔者是从站点www.kernelnotes.org上下载了Linux的最新开发版内核2.3.14的源代码,全部代码被压缩到一个名叫Linux-2.3.14.tar.gz的文件中。
二、 释放内核源代码
由于源代码放在一个压缩文件中,因此在配置内核之前,要先将源代码释放到指定的目录下。首先以root帐号登录,然后进入/usr/src子目录。如果用户在安装Linux时,安装了内核的源代码,则会发现一个linux-2.2.5的子目录。该目录下存放着内核2.2.5的源代码。此外,还会发现一个指向该目录的链接linux。删除该连接,然后将新内核的源文件拷贝到/usr/src目录中。
(一)、用tar命令释放内核源代码
# cd /usr/src
# tar zxvf Linux-2.3.14.tar.gz
文件释放成功后,在/usr/src目录下会生成一个linux子目录。其中包含了内核2.3.14的全部源代码。
(二)、将/usr/include/asm、/usr/inlude/linux、/usr/include/scsi链接到/usr/src/linux/include目录下的对应目录中。
# cd /usr/include
# rm -Rf asm linux
# ln -s /usr/src/linux/include/asm-i386 asm
# ln -s /usr/src/linux/include/linux linux
# ln -s /usr/src/linux/include/scsi scsi
(三)、删除源代码目录中残留的.o文件和其它从属文件。
# cd /usr/src/linux
# make mrproper
三、 配置内核
(一)、启动内核配置程序。
# cd /usr/src/linux
# make config
除了上面的命令,用户还可以使用make menuconfig命令启动一个菜单模式的配置界面。如果用户安装了X window系统,还可以执行make xconfig命令启动X window下的内核配置程序。
(二)、配置内核
Linux的
内核配置程序提供了一系列配置选项。对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内
核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序
的支持。由于内核的配置选项非常多,本文只介绍一些比较重要的选项。
1、Code maturity level options(代码成熟度选项)
Prompt for development and/or incomplete code/drivers
(CONFIG_EXPERIMENTAL) [N/y/?]
如果用户想要使用还处于测试阶段的代码或驱动,可以选择“y”。如果想编译出一个稳定的内核,则要选择“n”。
1、 Processor type and features(处理器类型和特色)
(1)、Processor family (386, 486/Cx486, 586/K5/5x86/6x86, Pentium/K6/TSC, PPro/6x86MX) [PPro/6x86MX] 选择处理器类型,缺省为Ppro/6x86MX。
(2)、Maximum Physical Memory (1GB, 2GB) [1GB] 内核支持的最大内存数,缺省为1G。
(3)、Math emulation (CONFIG_MATH_EMULATION) [N/y/?] 协处理器仿真,缺省为不仿真。
(4)、MTRR (Memory Type Range Register) support (CONFIG_MTRR) [N/y/?]
选择该选项,系统将生成/proc/mtrr文件对MTRR进行管理,供X server使用。
(5)、Symmetric multi-processing support (CONFIG_SMP) [Y/n/?] 选择“y”,内核将支持对称多处理器。
2、 Loadable mole support(可加载模块支持)
(1)、Enable loadable mole support (CONFIG_MODULES) [Y/n/?] 选择“y”,内核将支持加载模块。
(2)、Kernel mole loader (CONFIG_KMOD) [N/y/?] 选择“y”,内核将自动加载那些可加载模块,否则需要用户手工加载。
3、 General setup(一般设置)
(1)、Networking support (CONFIG_NET) [Y/n/?] 该选项设置是否在内核中提供网络支持。
(2)、PCI support (CONFIG_PCI) [Y/n/?] 该选项设置是否在内核中提供PCI支持。
(3)、PCI access mode (BIOS, Direct, Any) [Any] 该选项设置Linux探测PCI设备的方式。选择“BIOS”,Linux将使用BIOS;选择“Direct”,Linux将不通过BIOS;选择“Any”,Linux将直接探测PCI设备,如果失败,再使用BIOS。
(4)Parallel port support (CONFIG_PARPORT) [N/y/m/?] 选择“y”,内核将支持平行口。
4、 Plug and Play configuration(即插即用设备支持)
(1)、Plug and Play support (CONFIG_PNP) [Y/m/n/?] 选择“y”,内核将自动配置即插即用设备。
(2)、ISA Plug and Play support (CONFIG_ISAPNP) [Y/m/n/?] 选择“y”,内核将自动配置基于ISA总线的即插即用设备。
5、 Block devices(块设备)
(1)、Normal PC floppy disk support (CONFIG_BLK_DEV_FD) [Y/m/n/?] 选择“y”,内核将提供对软盘的支持。
(2)、Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support (CONFIG_BLK_DEV_IDE) [Y/m/n/?] 选择“y”,内核将提供对增强IDE硬盘、CDROM和磁带机的支持。
6、 Networking options(网络选项)
(1)、Packet socket (CONFIG_PACKET) [Y/m/n/?] 选择“y”,一些应用程序将使用Packet协议直接同网络设备通讯,而不通过内核中的其它中介协议。
(2)、Network firewalls (CONFIG_FIREWALL) [N/y/?] 选择“y”,内核将支持防火墙。
(3)、TCP/IP networking (CONFIG_INET) [Y/n/?] 选择“y”,内核将支持TCP/IP协议。
(4)The IPX protocol (CONFIG_IPX) [N/y/m/?] 选择“y”,内核将支持IPX协议。
(5)、Appletalk DDP (CONFIG_ATALK) [N/y/m/?] 选择“y”,内核将支持Appletalk DDP协议。
8、SCSI support(SCSI支持)
如果用户要使用SCSI设备,可配置相应选项。
9、Network device support(网络设备支持)
Network device support (CONFIG_NETDEVICES) [Y/n/?] 选择“y”,内核将提供对网络驱动程序的支持。
10、Ethernet (10 or 100Mbit)(10M或100M以太网)
在该项设置中,系统提供了许多网卡驱动程序,用户只要选择自己的网卡驱动就可以了。此外,用户还可以根据需要,在内核中加入对FDDI、PPP、SLIP和无线LAN(Wireless LAN)的支持。
11、Character devices(字符设备)
(1)、Virtual terminal (CONFIG_VT) [Y/n/?] 选择“y”,内核将支持虚拟终端。
(2)、Support for console on virtual terminal (CONFIG_VT_CONSOLE) [Y/n/?]
选择“y”,内核可将一个虚拟终端用作系统控制台。
(3)、Standard/generic (mb) serial support (CONFIG_SERIAL) [Y/m/n/?]
选择“y”,内核将支持串行口。
(4)、Support for console on serial port (CONFIG_SERIAL_CONSOLE) [N/y/?]
选择“y”,内核可将一个串行口用作系统控制台。
12、Mice(鼠标)
PS/2 mouse (aka "auxiliary device") support (CONFIG_PSMOUSE) [Y/n/?] 如果用户使用的是PS/2鼠标,则该选项应该选择“y”。
13、Filesystems(文件系统)
(1)、Quota support (CONFIG_QUOTA) [N/y/?] 选择“y”,内核将支持磁盘限额。
(2)、Kernel automounter support (CONFIG_AUTOFS_FS) [Y/m/n/?] 选择“y”,内核将提供对automounter的支持,使系统在启动时自动 mount远程文件系统。
(3)、DOS FAT fs support (CONFIG_FAT_FS) [N/y/m/?] 选择“y”,内核将支持DOS FAT文件系统。
(4)、ISO 9660 CDROM filesystem support (CONFIG_ISO9660_FS) [Y/m/n/?]
选择“y”,内核将支持ISO 9660 CDROM文件系统。
(5)、NTFS filesystem support (read only) (CONFIG_NTFS_FS) [N/y/m/?]
选择“y”,用户就可以以只读方式访问NTFS文件系统。
(6)、/proc filesystem support (CONFIG_PROC_FS) [Y/n/?] /proc是存放Linux系统运行状态的虚拟文件系统,该项必须选择“y”。
(7)、Second extended fs support (CONFIG_EXT2_FS) [Y/m/n/?] EXT2是Linux的标准文件系统,该项也必须选择“y”。
14、Network File Systems(网络文件系统)
(1)、NFS filesystem support (CONFIG_NFS_FS) [Y/m/n/?] 选择“y”,内核将支持NFS文件系统。
(2)、SMB filesystem support (to mount WfW shares etc.) (CONFIG_SMB_FS)
选择“y”,内核将支持SMB文件系统。
(3)、NCP filesystem support (to mount NetWare volumes) (CONFIG_NCP_FS)
选择“y”,内核将支持NCP文件系统。
15、Partition Types(分区类型)
该选项支持一些不太常用的分区类型,用户如果需要,在相应的选项上选择“y”即可。
16、Console drivers(控制台驱动)
VGA text console (CONFIG_VGA_CONSOLE) [Y/n/?] 选择“y”,用户就可以在标准的VGA显示方式下使用Linux了。
17、Sound(声音)
Sound card support (CONFIG_SOUND) [N/y/m/?] 选择“y”,内核就可提供对声卡的支持。
18、Kernel hacking(内核监视)
Magic SysRq key (CONFIG_MAGIC_SYSRQ) [N/y/?] 选择“y”,用户就可以对系统进行部分控制。一般情况下选择“n”。
四、 编译内核
(一)、建立编译时所需的从属文件
# cd /usr/src/linux
# make dep
(二)、清除内核编译的目标文件
# make clean
(三)、编译内核
# make zImage
内核编译成功后,会在/usr/src/linux/arch/i386/boot目录中生成一个新内核的映像文件zImage。如果编译的内核很大的话,系统会提示你使用make bzImage命令来编译。这时,编译程序就会生成一个名叫bzImage的内核映像文件。
(四)、编译可加载模块
如果用户在配置内核时设置了可加载模块,则需要对这些模块进行编译,以便将来使用insmod命令进行加载。
# make moles
# make modelus_install
编译成功后,系统会在/lib/moles目录下生成一个2.3.14子目录,里面存放着新内核的所有可加载模块。
五、 启动新内核
(一)、将新内核和System.map文件拷贝到/boot目录下
# cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-2.3.14
# cp /usr/src/linux/System.map /boot/System.map-2.3.14
# cd /boot
# rm -f System.map
# ln -s System.map-2.3.14 System.map
(二)、配置/etc/lilo.conf文件。在该文件中加入下面几行:
default=linux-2.3.14
image=/boot/vmlinuz-2.3.14
label=linux-2.3.14
root=/dev/hda1
read-only
(三)、使新配置生效
# /sbin/lilo
(四)、重新启动系统
# /sbin/reboot
新内核如果不能正常启动,用户可以在LILO:提示符下启动旧内核。然后查出故障原因,重新编译新内核即可。
了解更多开源相关,去LUPA社区看看吧。
⑥ 如何编译linux版本
编译安装内核
下载并解压内核
内核下载官网:https://www.kernel.org/
解压内核:tar xf linux-2.6.XX.tar.xz
定制内核:make menuconfig
参见makefile menuconfig过程讲解
编译内核和模块:make
生成内核模块和vmlinuz,initrd.img,Symtem.map文件
安装内核和模块:sudo make moles_install install
复制模块文件到/lib/moles目录下、复制config,vmlinuz,initrd.img,Symtem.map文件到/boot目录、更新grub
其他命令:
make mrprobe:命令的作用是在每次配置并重新编译内核前需要先执行“make mrproper”命令清理源代码树,包括过去曾经配置的内核配置文件“.config”都将被清除。即进行新的编译工作时将原来老的配置文件给删除到,以免影响新的内核编译。
make dep:生成内核功能间的依赖关系,为编译内核做好准备。
几个重要的Linux内核文件介绍
config
使用make menuconfig 生成的内核配置文件,决定将内核的各个功能系统编译进内核还是编译为模块还是不编译。
vmlinuz 和 vmlinux
vmlinuz是可引导的、压缩的内核,“vm”代表“Virtual Memory”。Linux 支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制,Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行的Linux内核,vmlinuz的建立有两种方式:一是编译内核时通过“make zImage”创建,zImage适用于小内核的情况,它的存在是为了向后的兼容性;二是内核编译时通过命令make bzImage创建,bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起误解,bz表示“big zImage”,bzImage中的b是“big”意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码,所以你不能用gunzip 或 gzip –dc解包vmlinuz。 内核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage 或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。 vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
initrd.img
initrd是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。比如initrd- 2.4.7-10.img主要是用于加载ext3等文件系统及scsi设备的驱动。如果你使用的是scsi硬盘,而内核vmlinuz中并没有这个 scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/moles下。为了解决这个问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题,initrd-2.4.7-10.img是用gzip压缩的文件。initrd映象文件是使用mkinitrd创建的,mkinitrd实用程序能够创建initrd映象文件,这个命令是RedHat专有的,其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd
System.map是一个特定内核的内核符号表,由“nm vmlinux”产生并且不相关的符号被滤出。
下面几行来自/usr/src/linux-2.4/Makefile:
nm vmlinux | grep -v '(compiled)|(.o$$)|( [aUw] )|(..ng$$)|(LASH[RL]DI)' | sort > System.map
在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号, Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名,比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。 对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,而内核运行时使用地址。 然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号,这由符号表来完成,符号表是所有符号连同它们的地址的列表。
Linux 符号表使用到2个文件: /proc/ksyms 、System.map 。/proc/ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看 出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map 具有的是错误的符号信息,每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核本身并不真正使用System.map,但其它程序比如klogd, lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。 另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。 Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map: /boot/System.map 、/System.map 、/usr/src/linux/System.map
System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。
makefile menuconfig过程讲解
当我们在执行make menuconfig这个命令时,系统到底帮我们做了哪些工作呢?这里面一共涉及到了一下几个文件我们来一一探讨
Linux内核根目录下的scripts文件夹
arch/$ARCH/Kconfig文件、各层目录下的Kconfig文件
Linux内核根目录下的makefile文件、各层目录下的makefile文件
Linux内核根目录下的的.config文件、arch/$ARCH/configs/下的文件
Linux内核根目录下的 include/generated/autoconf.h文件
1)scripts文件夹存放的是跟make menuconfig配置界面的图形绘制相关的文件,我们作为使用者无需关心这个文件夹的内容
2)当我们执行make menuconfig命令出现上述蓝色配置界面以前,系统帮我们做了以下工作:
首先系统会读取arch/$ARCH/目录下的Kconfig文件生成整个配置界面选项(Kconfig是整个linux配置机制的核心),那么ARCH环境变量的值等于多少呢?它是由linux内核根目录下的makefile文件决定的,在makefile下有此环境变量的定义:
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
..........
export KBUILD_BUILDHOST := $(SUBARCH)
ARCH ?= $(SUBARCH)
CROSS_COMPILE ?=
或者通过 make ARCH=arm menuconfig命令来生成配置界面
比如教务处进行考试,考试科数可能有外语、语文、数学等科,这里我们选择了arm科可进行考试,系统就会读取arm/arm/kconfig文件生成配置选项(选择了arm科的卷子),系统还提供了x86科、milps科等10几门功课的考试题
3)假设教务处比较“仁慈”,为了怕某些同学做错试题,还给我们准备了一份参考答案(默认配置选项),存放在arch/$ARCH/configs/目录下,对于arm科来说就是arch/arm/configs文件夹:
此文件夹中有许多选项,系统会读取哪个呢?内核默认会读取linux内核根目录下.config文件作为内核的默认选项(试题的参考答案),我们一般会根据开发板的类型从中选取一个与我们开发板最接近的系列到Linux内核根目录下(选择一个最接近的参考答案)
4).config
假设教务处留了一个心眼,他提供的参考答案并不完全正确(.config文件与我们的板子并不是完全匹配),这时我们可以选择直接修改.config文件然后执行make menuconfig命令读取新的选项。但是一般我们不采取这个方案,我们选择在配置界面中通过空格、esc、回车选择某些选项选中或者不选中,最后保存退出的时候,Linux内核会把新的选项(正确的参考答案)更新到.config中,此时我们可以把.config重命名为其它文件保存起来(当你执行make distclean时系统会把.config文件删除),以后我们再配置内核时就不需要再去arch/arm/configs下考取相应的文件了,省去了重新配置的麻烦,直接将保存的.config文件复制为.config即可.
5)经过以上两步,我们可以正确的读取、配置我们需要的界面了,那么他们如何跟makefile文件建立编译关系呢?当你保存make menuconfig选项时,系统会除了会自动更新.config外,还会将所有的选项以宏的形式保存在Linux内核根目录下的 include/generated/autoconf.h文件下
内核中的源代码就都会包含以上.h文件,跟宏的定义情况进行条件编译。
当我们需要对一个文件整体选择如是否编译时,还需要修改对应的makefile文件,例如:
我们选择是否要编译s3c2410_ts.c这个文件时,makefile会根据CONFIG_TOUCHSCREEN_S3C2410来决定是编译此文件,此宏是在Kconfig文件中定义,当我们配置完成后,会出现在.config及autconf中,至此,我们就完成了整个linux内核的编译过程。
最后我们会发现,整个linux内核配置过程中,留给用户的接口其实只有各层Kconfig、makefile文件以及对应的源文件。
比如我们如果想要给内核增加一个功能,并且通过make menuconfig控制其声称过程
首先需要做的工作是:修改对应目录下的Kconfig文件,按照Kconfig语法增加对应的选项;
其次执行make menuconfig选择编译进内核或者不编译进内核,或者编译为模块,.config文件和autoconf.h文件会自动生成;
最后修改对应目录下的makefile文件完成编译选项的添加;
最后的最后执行make命令进行编译。
Kconfig和Makefile
Linux内核源码树的每个目录下都有两个文档Kconfig和Makefile。分布到各目录的Kconfig构成了一个分布式的内核配置数据库,每个Kconfig分别描述了所属目录源文档相关的内核配置菜单。在执行内核配置make menuconfig时,从Kconfig中读出菜单,用户选择后保存到.config的内核配置文档中。在内核编译时,主Makefile调用这 个.config,就知道了用户的选择。这个内容说明了,Kconfig就是对应着内核的每级配置菜单。
假如要想添加新的驱动到内核的源码中,要修改Kconfig,这样就能够选择这个驱动,假如想使这个驱动被编译,则要修改Makefile。添加新 的驱动时需要修改的文档有两种(如果添加的只是文件,则只需修改当前层Kconfig和Makefile文件;如果添加的是目录,则需修改当前层和目录下 的共一对Kconfig和Makefile)Kconfig和Makefile。要想知道怎么修改这两种文档,就要知道两种文档的语法结构,Kconfig的语法参见参考文献《【linux-2.6.31】kbuild》。
Makefile 文件包含 5 部分:
Makefile 顶层的 Makefile
.config 内核配置文件
arch/$(ARCH)/Makefile 体系结构 Makefile
scripts/Makefile.* 适用于所有 kbuild Makefile 的通用规则等
kbuild Makefiles 大约有 500 个这样的文件
顶层 Makefile 读取内核配置操作产生的.config 文件,顶层 Makefile 构建两个主要的目标:vmlinux(内核映像)和 moles(所有模块文件)。它通过递归访问内核源码树下的子目录来构建这些目标。访问哪些子目录取决于内核配置。顶层 Makefile 包含一个体系结构 Makefile,由 arch/$(ARCH)/Makefile 指定。体系结构 Makefile 文件为顶层 Makefile 提供了特定体系结构的信息。每个子目录各有一个 kbuild文件和Makefile 文件来执行从上层传递下来的命令。kbuild和Makefile文件利用.config 文件中的信息来构造由 kbuild 构建内建或者模块对象使用的各种文件列表。scripts/Makefile.*包含所有的定义/规则,等等。这些信息用于使用 kbuild和 Makefile 文件来构建内核。Makefile的语法参见参考文献《【linux-2.6.31】kbuild》。
参考文献
【linux-2.6.31】内核编译指南.pdf
【linux-2.6.31】kbuild.pdf
Linker script in Linux.pdf
linux内核的配置机制及其编译过程
Linux内核编译过程详解
Linux Kconfig及Makefile学习