导航:首页 > 源码编译 > 高中log的算法

高中log的算法

发布时间:2022-04-15 09:22:07

㈠ 求log函数运算公式大全

logₐ(MN)=logₐM+logₐN

logₐ(M/N)=logₐM-logₐN

logₐ(1/N)=-logₐN

logₐ(ₐᵏ)=k

logₐMⁿ=nlogₐM

(1)高中log的算法扩展阅读:

如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。

在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

㈡ 求高中与log有关的公式!

用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=a^[log(a)(N)]a=b^[log(b)(a)]综合两式可得N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n)/ln(b^n)由基本性质4可得log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1三角函数的和差化积公式sinα+sinβ=2sin(α+β)/2·cos(α-β)/2sinα-sinβ=2cos(α+β)/2·sin(α-β)/2cosα+cosβ=2cos(α+β)/2·cos(α-β)/2cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2三角函数的积化和差公式sinα·cosβ=1/2[sin(α+β)+sin(α-β)]cosα·sinβ=1/2[sin(α+β)-sin(α-β)]cosα·cosβ=1/2[cos(α+β)+cos(α-β)]sinα·sinβ=-1/2[cos(α+β)-cos(α-β)]

㈢ log怎么计算

如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。

计算方式:

根据2^3=8,可得log2 8=3。

(3)高中log的算法扩展阅读:

推导公式

log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)

loga(b)*logb(a)=1

loge(x)=ln(x)

lg(x)=log10(x)

求导数

(xlogax)'=logax+1/lna

其中,logax中的a为底数,x为真数;

(logax)'=1/xlna

特殊的即a=e时有

(logex)'=(lnx)'=1/x[4]

㈣ 高中数学中log知识点是什么

高中数学中log知识点如下:

1、对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。

2、通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

3、对数的公式都有loga(1)=0loga(a)=1,负数与零无对数loga(MN)=logaM+logaN,loga(M/N)=logaM-logaN,对logaM中M的n次方有=nlogaMa^(log(a)(b))=blog(a),(MN)=log(a)(M)+log(a)(N),log(a)(M÷N)=log(a)(M)-log(a)(N),log(a)(M^n)=nlog(a)(M),log(a^n)M=1/nlog(a)(M)。

log的换底公式推导步骤

设b=a^m,a=c^n,则b=(c^n)^m=c^(mn)①

对①取以a为底的对数,有:log(a)(b)=m②

对①取以c为底的对数,有:log(c)(b)=mn③

③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)

㈤ 高中数学里 log是什么意思

log在高中数学里表示对数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学计数中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN记为In N。

2、恒等式及证明

a^log(a)(N)=N (a>0 ,a≠1)

对数公式运算的理解与推导by寻韵天下(8张)

推导:log(a) (a^N)=N恒等式证明

在a>0且a≠1,N>0时

设:当log(a)(N)=t,满足(t∈R)

则有a^t=N;

a^(log(a)(N))=a^t=N。

㈥ log是怎么计算的

先纠正你写法中的两处错误:
1、lg10=1,lg100=2,不能错写为log10=1,log100=2
2、lg100=2,lg100=10是错的。
lg2+lg5=lg(2x5)=lg10=1
lg后面加数字一般是不能计算出结果的,需要用计算器才能计算出结果。所谓公式就是对数计算的法则,教科书上都有的,只要去看看书就行了。

㈦ log怎么算

log的计算就是乘方的逆过程。

如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。

计算方式:

根据2^3=8,可得log2 8=3。

(7)高中log的算法扩展阅读

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

㈧ 高中数学 log的计算方式,请详细解答。

如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。


计算方式:


根据2^3=8,可得log2 8=3。

推导

1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、MN=M×N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) + log(a)(N)

㈨ log 是什么 数学里的 在算的时候怎么算

log是对数计算符号。

如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。

对数相关运算公式示例如下:

1、alogab=b a^{log(a^b)}=b

2、loga(MN)=logaM+logaNlog{a^(MN)}=log(a^M)+log(a^N)

3、loga(M÷N)=logaM-logaN log{a^(M/N)}=log(a^M)-log(a^N)

4、loga(Mn)=nlogaM log{a^(M^n)}=nlog(a^M)

5、log(an)(M)=1/nlogaMlog{(a^n)^M}=1/nlog(a^M)

(9)高中log的算法扩展阅读:

特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。

称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。

对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。

例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。

㈩ log 的计算方法

1、a^(log(a)(b))=b

2、log(a)(MN)=log(a)(M)+log(a)(N)

3、log(a)(M÷N)=log(a)(M)-log(a)(N)

4、log(a)(M^n)=nlog(a)(M)

5、lgM=log(10)(M)

上是增函数。

阅读全文

与高中log的算法相关的资料

热点内容
mysqlphp变量 浏览:287
云开发小程序源码视频激励 浏览:817
python的pandas库怎么导入 浏览:720
计算机现在常用的加密方法 浏览:516
工资满月算法 浏览:340
linux开启80端口命令 浏览:116
php银行支付 浏览:816
java内存模型与线程 浏览:73
辽宁存储服务器云空间 浏览:849
程序员看能力还是看学历 浏览:28
查看压缩包格式 浏览:868
android仿微信相册 浏览:881
想换手机没钱有什么app 浏览:873
我的世界里的命令方块 浏览:572
找附近民宿什么app好 浏览:137
什么app能把app移到另一个手机上 浏览:385
车帝下载不了app是什么原因 浏览:953
libpnglinux安装 浏览:971
公交什么app有折扣 浏览:563
模拟器文件夹的文件如何复制出来 浏览:574