导航:首页 > 源码编译 > 卡尔曼算法流程图

卡尔曼算法流程图

发布时间:2022-04-15 13:36:43

Ⅰ 卡尔曼滤波的通俗解释

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
卡尔曼滤波器的介绍 :
为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。
假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分布(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。
好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。
由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的协方差(covariance)来判断。因为Kg=5^2/(5^2+4^2),所以Kg=0.61,我们可以估算出k时刻的实际温度值是:23+0.61*(25-23)=24.22度。可以看出,因为温度计的协方差(covariance)比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.22度)的偏差。算法如下:((1-Kg)*5^2)^0.5=3.12。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的3.12就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
就是这样,卡尔曼滤波器就不断的把(协方差(covariance)递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的协方差(covariance)。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!
下面就要言归正传,讨论真正工程系统上的卡尔曼。
卡尔曼滤波器算法 :
在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随机变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的协方差(covariance)分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们结合他们的协方差来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的协方差还没更新。我们用P表示协方差(covariance):
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)对应的协方差,P(k-1|k-1)是X(k-1|k-1)对应的协方差,A’表示A的转置矩阵,Q是系统过程的协方差。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg为卡尔曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)
到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要令卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的协方差:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。
卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易用计算机编程实现。
在上面的例子中,过程误差和测量误差设定为4是为了讨论的方便。实际中,温度的变化速度以及温度计的测量误差都没有这么大。
假设如下一个系统: 房间内连续两个时刻温度差值的标准差为0.02度 温度计的测量值误差的标准差为0.5度 房间温度的真实值为24度 对温度的初始估计值为23.5度,误差的方差为1 MatLab仿真的代码如下:
% Kalman filter example of temperature measurement in Matlab
% This M code is modified from Xuchen Yao's matlab on 2013/4/18
%房间当前温度真实值为24度,认为下一时刻与当前时刻温度相同,误差为0.02度(即认为连续的两个时刻最多变化0.02度)。
%温度计的测量误差为0.5度。
%开始时,房间温度的估计为23.5度,误差为1度。
% Kalman filter example demo in Matlab
% This M code is modified from Andrew D. Straw's Python
% implementation of Kalman filter algorithm.
% The original code is from the link in references
% Below is the Python version's comments:
% Kalman filter example demo in Python
% A Python implementation of the example given in pages 11-15 of An
% Introction to the Kalman Filter by Greg Welch and Gary Bishop,
% University of North Carolina at Chapel Hill, Department of Computer
% Science, TR 95-041,
% by Andrew D. Straw
% by Xuchen Yao
% by Lin Wu
clear all;
close all;
% intial parameters
n_iter = 100; %计算连续n_iter个时刻
sz = [n_iter, 1]; % size of array. n_iter行,1列
x = 24; % 温度的真实值
Q = 4e-4; % 过程方差, 反应连续两个时刻温度方差。更改查看效果
R = 0.25; % 测量方差,反应温度计的测量精度。更改查看效果
z = x + sqrt(R)*randn(sz); % z是温度计的测量结果,在真实值的基础上加上了方差为0.25的高斯噪声。
% 对数组进行初始化
xhat=zeros(sz); % 对温度的后验估计。即在k时刻,结合温度计当前测量值与k-1时刻先验估计,得到的最终估计值
P=zeros(sz); % 后验估计的方差
xhatminus=zeros(sz); % 温度的先验估计。即在k-1时刻,对k时刻温度做出的估计
Pminus=zeros(sz); % 先验估计的方差
K=zeros(sz); % 卡尔曼增益,反应了温度计测量结果与过程模型(即当前时刻与下一时刻温度相同这一模型)的可信程度
% intial guesses
xhat(1) = 23.5; %温度初始估计值为23.5度
P(1) =1; %误差方差为1
for k = 2:n_iter
% 时间更新(预测)
xhatminus(k) = xhat(k-1); %用上一时刻的最优估计值来作为对当前时刻的温度的预测
Pminus(k) = P(k-1)+Q; %预测的方差为上一时刻温度最优估计值的方差与过程方差之和
% 测量更新(校正)
K(k) = Pminus(k)/( Pminus(k)+R ); %计算卡尔曼增益
xhat(k) = xhatminus(k)+K(k)*(z(k)-xhatminus(k)); %结合当前时刻温度计的测量值,对上一时刻的预测进行校正,得到校正后的最优估计。该估计具有最小均方差
P(k) = (1-K(k))*Pminus(k); %计算最终估计值的方差
end
FontSize=14;
LineWidth=3;
figure();
plot(z,'k+'); %画出温度计的测量值 hold on;
plot(xhat,'b-','LineWidth',LineWidth) %画出最优估计值
hold on;
plot(x*ones(sz),'g-','LineWidth',LineWidth); %画出真实值
legend('温度计的测量结果', '后验估计', '真实值');
xl=xlabel('时间(分钟)');
yl=ylabel('温度');
set(xl,'fontsize',FontSize);
set(yl,'fontsize',FontSize);
hold off;
set(gca,'FontSize',FontSize);
figure();
valid_iter = [2:n_iter]; % Pminus not valid at step 1
plot(valid_iter,P([valid_iter]),'LineWidth',LineWidth); %画出最优估计值的方差
legend('后验估计的误差估计');
xl=xlabel('时间(分钟)');
yl=ylabel('℃^2');
set(xl,'fontsize',FontSize);
set(yl,'fontsize',FontSize);
set(gca,'FontSize',FontSize);

Ⅱ 卡尔曼滤波,求大神用点通俗易懂的方式解释一下,越详细越好!

卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。

数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用.

Ⅲ 什么叫卡尔曼滤波算法其序贯算法

卡尔曼滤波算法(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
序贯算法又叫序贯相似性检测算法,是指图像匹配技术是根据已知的图像模块(模板图)在另一幅图像(搜索图)中寻找相应或相近模块的过程,它是计算机视觉和模式识别中的基本手段。已在卫星遥感、空间飞行器的自动导航、机器人视觉、气象云图分析及医学x射线图片处理等许多领域中得到了广泛的应用。研究表明,图像匹配的速度主要取决于匹配算法的搜索策略。
数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用。

Ⅳ 卡尔曼滤波算法是什么

卡尔曼滤波是一个滤波算法,应用非常广泛,它是一种结合先验经验、测量更新的状态估计算法,卡尔曼滤波器是在估计线性系统状态的过程中,以最小均方误差为目的而推导出的几个递推数学等式。

卡尔曼过程中要用到的概念。即什么是协方差,它有什么含义,以及什么叫最小均方误差估计,什么是多元高斯分布。如果对这些有了了解,可以跳过,直接到下面的分割线。

均方误差:

它是"误差"的平方的期望值(误差就是每个估计值与真实值的差),也就是多个样本的时候,均方误差等于每个样本的误差平方再乘以该样本出现的概率的和。

方差:

方差是描述随机变量的离散程度,是变量离期望值的距离。

注意:

两者概念上稍有差别,当你的样本期望值就是真实值时,两者又完全相同。最小均方误差估计就是指估计参数时要使得估计出来的模型和真实值之间的误差平方期望值最小。

Ⅳ 卡尔曼滤波的基本原理和算法

卡尔曼滤波的原理用几何方法来解释。这时,~X和~Z矩阵中的每个元素应看做向量空间中的一个向量而不再是一个单纯的数。这个向量空间(统计测试空间)可以看成无穷多维的,每一个维对应一个可能的状态。~X和~Z矩阵中的每个元素向量都是由所有可能的状态按照各自出现的概率组合而成(在测量之前,~X和~Z 的实际值都是不可知的)。~X和~Z中的每个元素向量都应是0均值的,与自己的内积就是他们的协方差矩阵。无法给出~X和~Z中每个元素向量的具体表达,但通过协方差矩阵就可以知道所有元素向量的模长,以及相互之间的夹角(从内积计算)。
为了方便用几何方法解释,假设状态变量X是一个1行1列的矩阵(即只有一个待测状态量),而量测变量Z是一个2行1列的矩阵(即有两个测量仪器,共同测量同一个状态量X),也就是说,m=1,n=2。矩阵X中只有X[1]一项,矩阵Z中有Z[1]和Z[2]两项。Kg此时应是一个1行2列的矩阵,两个元素分别记作Kg1 和 Kg2 。H和V此时应是一个2行1列的矩阵。

参考资料:
http://blog.csdn.net/newthinker_wei/article/details/11768443

Ⅵ 卡尔曼滤波器的算法

在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随机变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要令卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

Ⅶ 滤波卡尔曼算法主要解决什么问题

卡尔曼滤波采用递推估计的算法,解决包括非平稳随机过程在内的波形的最佳线性估计,从状态方程和测量方程着手建立其信号模型。基本特点是:1)采用了随机过程的矢量模型;2)采用递归算法。望对你有助。

Ⅷ 卡尔曼滤波中的真实值,测量值,预测值,估计值怎么区分

卡尔曼滤波中的真实值,测量值,预测值,估计值区分方法:

1、真实值为目标运动的真实轨迹上的坐标,是理论上假设的一个参考值,不带偏差时的真值;

2、测量值则是kalman滤波中的量测矩阵Z,是测量设备/传感器/等等测到的数值,带有偏差;

3、预测值则是通过状态转移矩阵,由上一时刻的估计值得到现在时刻的预测值,即x(k|k-1)=F*x(k-1|k-1),从上一时刻的估计值出发,先验估计出来的值,带有偏差;

4、估计值就是经kalman滤波得到的状态更新值x(k|k),是综合考虑测量值和预测值,后验估计出来的值,也有偏差,只是偏差比测量值和预测值的都小。



(8)卡尔曼算法流程图扩展阅读:

卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

Kalman滤波便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用。

参考资料来源:网络-卡尔曼滤波

Ⅸ 卡尔曼滤波如何预测

很多人将卡尔曼滤波用在股票啊,流量啊的上面,其实不是很科学,卡尔曼滤波运用的是‘惯性思维’,在普通的观测上加入了物体的运动有惯性,加速度很难突变的条件增加准确度。而客流量这种东西并没有惯性,除非你有相关模型,否则不是很适用卡尔曼滤波。PS:如果你做的是对于一个目标有多个观测数据,那么也是可以用卡尔曼滤波的,不过不需要使用状态转移矩阵了。对于一般的非机动目标,直接使用离散的常速CV模型作为状态转移矩阵,噪声在速度引入。观测矩阵要按实际情况,如果是做仿真,可以直接使用单位矩阵

卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。
数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用。
状态估计是卡尔曼滤波的重要组成部分。一般来说,根据观测数据对随机量进行定量推断就是估计问题,特别是对动态行为的状态估计,它能实现实时运行状态的估计和预测功能。比如对飞行器状态估计。状态估计对于了解和控制一个系统具有重要意义,所应用的方法属于统计学中的估计理论。最常用的是最小二乘估计,线性最小方差估计、最小方差估计、递推最小二乘估计等。其他如风险准则的贝叶斯估计、最大似然估计、随机逼近等方法也都有应用。
受噪声干扰的状态量是个随机量,不可能测得精确值,但可对它进行一系列观测,并依据一组观测值,按某种统计观点对它进行估计。使估计值尽可能准确地接近真实值,这就是最优估计。真实值与估计值之差称为估计误差。若估计值的数学期望与真实值相等,这种估计称为无偏估计。卡尔曼提出的递推最优估计理论,采用状态空间描述法,在算法采用递推形式,卡尔曼滤波能处理多维和非平稳的随机过程。

阅读全文

与卡尔曼算法流程图相关的资料

热点内容
mysqlphp变量 浏览:287
云开发小程序源码视频激励 浏览:817
python的pandas库怎么导入 浏览:720
计算机现在常用的加密方法 浏览:516
工资满月算法 浏览:340
linux开启80端口命令 浏览:116
php银行支付 浏览:816
java内存模型与线程 浏览:73
辽宁存储服务器云空间 浏览:849
程序员看能力还是看学历 浏览:28
查看压缩包格式 浏览:868
android仿微信相册 浏览:881
想换手机没钱有什么app 浏览:873
我的世界里的命令方块 浏览:572
找附近民宿什么app好 浏览:137
什么app能把app移到另一个手机上 浏览:385
车帝下载不了app是什么原因 浏览:953
libpnglinux安装 浏览:971
公交什么app有折扣 浏览:563
模拟器文件夹的文件如何复制出来 浏览:574