导航:首页 > 源码编译 > 数据类型匹配的压缩算法

数据类型匹配的压缩算法

发布时间:2022-04-15 23:56:47

1. 如何理解数据冗余类型和数据压缩算法算法是对应的举例说明

囧rz、我也是上网来找答案的

后来在《多媒体技术应用教程》内书的第96页第二自然段找到了。

数据冗余类型和数据压缩算法是对应的。一般根据不同的冗余类型采用不同的编码形式,随后是采用特定的技术手段和软硬件,以实现数据压缩。然后你自己结合上下文什么的总结一下就O了,你懂得。举例什么的请瞎编。

2. 数据压缩技术的数据压缩技术

在现今的电子信息技术领域,正发生着一场有长远影响的数字化革命。由于数字化的多媒体信息尤其是数字视频、音频信号的数据量特别庞大,如果不对其进行有效的压缩就难以得到实际的应用。因此,数据压缩技术已成为当今数字通信、广播、存储和多媒体娱乐中的一项关键的共性技术。
1.什么是数据压缩
其作用是:能较快地传输各种信号,如传真、Modem通信等;
在现有的通信干线并行开通更多的多媒体业务,如各种增值业务;紧缩数据存储容量,如 CD-ROM、VCD和DVD等;
降低发信机功率,这对于多媒体移动通信系统尤为重要。
由此看来,通信时间、传输带宽、存储空间甚至发射能量,都可能成为数据压缩的对象。
2.数据为何能被压缩
首先,数据中间常存在一些多余成分,既冗余度。如在一份计算机文件中,某些符号会重复出现、某些符号比其他符号出现得更频繁、某些字符总是在各数据块中可预见的位置上出现等,这些冗余部分便可在数据编码中除去或减少。冗余度压缩是一个可逆过程,因此叫做无失真压缩,或称保持型编码。
其次,数据中间尤其是相邻的数据之间,常存在着相关性。如图片中常常有色彩均匀的背影,电视信号的相邻两帧之间可能只有少量的变化影物是不同的,声音信号有时具有一定的规律性和周期性等等。因此,有可能利用某些变换来尽可能地去掉这些相关性。但这种变换有时会带来不可恢复的损失和误差,因此叫做不可逆压缩,或称有失真编码、摘压缩等。
此外,人们在欣赏音像节目时,由于耳、目对信号的时间变化和幅度变化的感受能力都有一定的极限,如人眼对影视节目有视觉暂留效应,人眼或人耳对低于某一极限的幅度变化已无法感知等,故可将信号中这部分感觉不出的分量压缩掉或“掩蔽掉”。这种压缩方法同样是一种不可逆压缩。
对于数据压缩技术而言,最基本的要求就是要尽量降低数字化的在码事,同时仍保持一定的信号质量。不难想象,数据压缩的方法应该是很多的,但本质上不外乎上述完全可逆的冗余度压缩和实际上不可逆的嫡压缩两类。冗余度压缩常用于磁盘文件、数据通信和气象卫星云图等不允许在压缩过程中有丝毫损失的场合中,但它的压缩比通常只有几倍,远远不能满足数字视听应用的要求。在实际的数字视听设备中,差不多都采用压缩比更高但实际有损的嫡压缩技术。
只要作为最终用户的人觉察不出或能够容忍这些失真,就允许对数字音像信号进一步压缩以换取更高的编码效率。摘压缩主要有特征抽取和量化两种方法,指纹的模式识别是前者的典型例子,后者则是一种更通用的摘压缩技术。
3数字音、视频的压缩标准
数字音频压缩技术标准分为电话语音压缩、调幅广播语音压缩和调频广播及CD音质的宽带有频压缩3种。
(1)电话(200HZ-3.4kHZ)语音压缩,主要有国际电信联盟(ITU)的G.711(64kbit/s、G.721(32kbit/s)、G.728(16kbit/s)和G.729(8kbit/的建议等,用于数字电话通信。
(2)调幅广播(50HZ-7kHZ)语音压缩,采用ITU的G.722(64kbit/s)建议,用于优质语音、音乐、音频会议和视频会议等。
(3)调频广播(20HZ-15kHZ)及CD音质(20HZ-20kH)的宽带音频压缩,主要采用MPEG-1或2双杜比AC-3等建议,用于CD、MD、MPC、VCD、DVD、HDTV和电影配音等。
视频压缩技术标准主要有:
①ITU H.261建议,用于ISDN信道的PC电视电话、桌面视频会议和音像邮件等通信终端。
②MPEG-1视频压缩标准,用于 VCD、MPC、PC/TV一体机、交互电视ITV和电视点播VOD。
③MPEG-2/ITU H.262视频标准,主要用于数字存储。视频广播和通信,如HDTV、CATV、DVD、VOD和电影点播MOD等。
④ITU H.263建议,用于网上的可视电话、移动多媒体终端、多媒体可视图文、遥感、电子邮件、电子报纸和交互式计算机成像等。
⑤MPEG-4和 ITU H.VLC/L低码率多媒体通信标准仍在发展之中。
4.数据压缩的实现
在各种数据类型中,最难实现的是数字机频的实时压缩,因为视频信号尤其是HDTV信号所占据的带宽甚宽,实时压缩需要很高的处理速度。现在,视频解码以及音频的编码、解码多依赖于专用芯片或数字信号处理器(DSP)未完成,并已有许多厂商推出了音视合一的单片MPEG-1、MPEG-2解码器。我国在发展数据压缩技术过程中,则充分利用了软件人才优势。
在软件实现方面,由于PC主机的处理能力正在飞速提高,直接利用主CPU编程实现各种视听压缩和解码算法对于桌面系统及家用多媒体将越来越有吸引力。
1996年上半年,Intel向全球软件界发布了它的微处理器媒体扩展(MMX)技术。这种技术主要是在Pentium或Pentium Pro芯片中增加了8个64位寄存器和57条功能强大的新指令,以提高多媒体和通信应用程序中某些计算密集的循环速度。MMX采用单指令多数据(SIMD)技术并行处理多个信号采样值,可使不同的应用程序性能成倍提高。如:视频压缩可提高1.5倍,图像处理可提高40倍,音频处理可提高3.7偌,语音识别可提高1.7倍,三维动画可提高20倍。
与Pentium完全兼容的P55C芯片是1998年3月正式推出的。以后推出的Pentium、Pentium pro或P7等CPU,均将支持MMX指令。
在数据压缩的硬件实现方面,根本的出路是要有自己的音像压缩芯片(特别是解压芯片),不管是专用集成电路(ASIC)实现,还是借助于通用DSP来编程。
而这一类芯片,目前还只是“雾里看花”。
不过我们相信,在不久的将来,这些也会成为现实。

3. 常用的数据压缩算法有哪些

基本的分为两大类:有损和无损。
有损压缩:主要是一些量化算法,比如a率,u率,lloyds最优量化。
无损压缩:主要是一些编码算法,比如子带编码,差分编码,哈夫曼编码等。
另外时频变换虽然没压缩效果,但是是很好的压缩工具,比如fft,dct等。
最后就是压缩感知稀疏重建等。

4. zip 的压缩原理与实现

文件压缩原理

我们使用计算机所做的事情大多都是对文件进行处理。每个文件都会占用一定的磁盘空间,我们希望一些文件,尤其是暂时不用但又比较重要不能删除的文件(如备份文件,有点像鸡肋呀),尽可能少的占用磁盘空间。但是,许多文件的存储格式是比较松散的,这样就浪费了一些宝贵的计算机存储资源。这时,我们可以借助压缩工具解决这个问题,通过对原来的文件进行压缩处理,使之用更少的磁盘空间保存起来,当需要使用时再进行解压缩操作,这样就大大节省了磁盘空间。当你要拷贝许多小文件时,通过压缩处理可以提高执行效率。如果小文件很多,操作系统要执行频繁的文件定位操作,需要花费很多的时间。如果先把这些小文件压缩,变成一个压缩文件后,再拷贝时就很方便了。由于计算机处理的信息是以二进制数的形式表示的,因此压缩软件就是把二进制信息中相同的字符串以特殊字符标记来达到压缩的目的。为了有助于理解文件压缩,请您在脑海里想象一幅蓝天白云的图片。对于成千上万单调重复的蓝色像点而言,与其一个一个定义“蓝、蓝、蓝……”长长的一串颜色,还不如告诉电脑:“从这个位置开始存储1117个蓝色像点”来得简洁,而且还能大大节约存储空间。这是一个非常简单的图像压缩的例子。其实,所有的计算机文件归根结底都是以“1”和“0”的形式存储的,和蓝色像点一样,只要通过合理的数学计算公式,文件的体积都能够被大大压缩以达到“数据无损稠密”的效果。总的来说,压缩可以分为有损和无损压缩两种。如果丢失个别的数据不会造成太大的影响,这时忽略它们是个好主意,这就是有损压缩。有损压缩广泛应用于动画、声音和图像文件中,典型的代表就是影碟文件格式mpeg、音乐文件格式mp3和图像文件格式jpg。但是更多情况下压缩数据必须准确无误,人们便设计出了无损压缩格式,比如常见的zip、rar等。压缩软件(compression software)自然就是利用压缩原理压缩数据的工具,压缩后所生成的文件称为压缩包(archive),体积只有原来的几分之一甚至更小。当然,压缩包已经是另一种文件格式了,如果你想使用其中的数据,首先得用压缩软件把数据还原,这个过程称作解压缩。常见的压缩软件有winzip、winrar等

5. 数据结构中压缩对象是什么

数据结构中的任何数据类型都可以被进行压缩。并没有固定的压缩对象。最、最关键的是:要熟练掌握数据压缩算法的相关理论知识、以及相关的数据压缩/解压缩数学模型。

6. 网络延迟的消除网络延迟

企业可以细致控制LAN内的应用程序性能,但这种控制能力无法延伸到广域网上。WAN通常会有多个可选的服务提供商,他们经营着运营商级的顶级骨干基础设施。通过选择较短和更有效率的路由路径、部署低延迟的交换机和路由设备、主动避免网络设备停机时间,WAN运营商也可以对降低延迟作出贡献。
增加WAN带宽能提高应用程序的性能,但带宽并不便宜,通常也不必这么干。
在实践中,运用能够更有效利用现有WAN带宽的各种技术同样可以提升WAN应用程序的性能。这些技术被统称为广域网加速器。加速器的功能通过减少数据有效负载和更有效地利用现有的WAN带宽来实现。
广域网加速产品通常都是物理设备。这些专用设备在WAN链路的两端都需要进行部署。对于虚拟化服务器环境,这些工具也有软件版本可用,可以实现许多和专用硬件相当的功能。
某些压缩算法专门针对特定的数据类型,能够在不增加带宽需求的前提下显着提升应用程序的性能。道理很简单,数据压缩可以无需额外磁盘就提升存储容量,同样,压缩过的数据在传输时可以比未压缩的数据占用更少的带宽。
如果业务非常依赖于WAN链路,可以考虑为使用频繁的数据建立本地缓存。Microsoft Windows服务器操作系统可以提供Branch Cache,同时也有许多第三方工具能够为远端资源创建缓存。在每个使用端缓存常用数据可以减少数据重新传输导致的大量带宽占用。在传送一个文件之前,发送端会对接收端的缓存进行检索:如果该文件已经被缓存,接收端只需简单地从现有的缓存中提取数据;如果文件不在缓存中,则允许发送该文件。高速缓存的高级选项能选择性地保护关键文件,防止重要的缓存数据被后来的文件覆盖,确保最重要的数据能被持续缓存。
数据包频繁丢失和重传现象有时会严重降低性能。主动纠错技术可以让目标网络不需要重传数据包就能修复数据包错误。减少数据量的办法还有:从Java脚本或样式表代码中移除多余的内容,或者对无损图像数据进行有损压缩以大幅减少文件大小。 如果一个刚安装或修改过设置的应用程序出现了本地网络性能问题,请尝试核查该应用程序的设置、系统兼容性和软件状态;另外也应审查安装和设置文档。例如,如果应用程序支持带宽限制,请检查带宽是否不小心限制过度而无法进行正常通信。
硬件兼容性也会影响局域网效率。例如,如果应用程序在采用巨型帧的时候产生高延迟,请核对网络接口卡(NIC)适配器和驱动程序是否已正确安装。在某些情况下,更新或补丁程序可能逆转原本很糟糕的性能表现。
在不存在兼容问题的硬件上装好了应用程序,安装了修补程序并进行了正确的设置之后,如果性能仍然不理想,那就应该尝试其他选项。问题常常是由于服务器负载过于集中,没有足够的网卡端口却有太多应用程序在争抢网络。请尝试增加网卡端口,为服务器提供额外的链路分担工作负载。NIC端口捆绑能为关键应用程序提供带宽叠加聚合。均衡工作负载,将繁忙的应用程序移动到较空闲的服务器上,也可以减少带宽争用,提高性能。
通过NIC捆绑,单个应用程序可以跨多个NIC端口利用这些端口的带宽总和进行数据传输。例如,如果捆绑2个千兆以太网端口,那么应用程序将获得2Gbps的总带宽。
另一个措施是工作负载均衡,在服务器之间移动虚拟机,优化每个物理主机的应用程序工作负载和带宽需求。
数据中心还可以考虑将服务器的网卡换成10千兆或者更快速的型号,或为陷入困境的高带宽应用单独安装专用的网络适配器。当然,更快的NIC可能非常昂贵,安装物理部件的过程要求服务器脱机,并且通常还会增加局域网交换基础设施的配套成本。例如,如果在服务器上安装了一块10千兆以太网适配器,就还需要一台具备10千兆以太网端口的交换机与之匹配。
要诊断LAN连接性问题,可以将当前应用程序的性能级别与相同应用程序在正常工作状态下的基准性能进行比对。如果应用程序性能并没有明显降低,问题可能在服务器外部的其它地方,例如网络交换机的问题。

7. 多媒体数据压缩编码方法可分为哪两大类

无损压缩编码
有损压缩编码
通常解码的运算复杂度低于编码.通过比较解码前后数据的是否一致,把数据编码方法分为无损编码和有损编码2类(即无损压缩和有损压缩)前者是解码前后数据完全一致,没有任何失真和偏差.后者有一定程度偏差和失真,但是没多大影响.常见的压缩算法有信息熵编码(主要有行程长度编码,哈夫曼编码和算术编码),通用编码,预测编码,模型法编码等等.无损压缩的算法一般比较复杂,而且一般的算法多为有损算法.考虑文件和图象的重要型,有时可采用无损压缩,但要注意此种压缩压缩比不会很高.

8. 数据压缩技术的数据压缩技术简史

电脑里的数据压缩其实类似于美眉们的瘦身运动,不外有两大功用。第一,可以节省空间。拿瘦身美眉来说,要是八个美眉可以挤进一辆出租车里,那该有多省钱啊!第二,可以减少对带宽的占用。例如,我们都想在不到 100Kbps 的 GPRS 网上观看 DVD 大片,这就好比瘦身美眉们总希望用一尺布裁出七件吊带衫,前者有待于数据压缩技术的突破性进展,后者则取决于美眉们的恒心和毅力。
简单地说,如果没有数据压缩技术,我们就没法用 WinRAR 为 Email 中的附件瘦身;如果没有数据压缩技术,市场上的数码录音笔就只能记录不到 20 分钟的语音;如果没有数据压缩技术,从 Internet 上下载一部电影也许要花半年的时间……可是这一切究竟是如何实现的呢?数据压缩技术又是怎样从无到有发展起来的呢? 一千多年前的中国学者就知道用“班马”这样的缩略语来指代班固和司马迁,这种崇尚简约的风俗一直延续到了今天的 Internet 时代:当我们在 BBS 上用“ 7456 ”代表“气死我了”,或是用“ B4 ”代表“ Before ”的时候,我们至少应该知道,这其实就是一种最简单的数据压缩呀。
严格意义上的数据压缩起源于人们对概率的认识。当我们对文字信息进行编码时,如果为出现概率较高的字母赋予较短的编码,为出现概率较低的字母赋予较长的编码,总的编码长度就能缩短不少。远在计算机出现之前,着名的 Morse 电码就已经成功地实践了这一准则。在 Morse 码表中,每个字母都对应于一个唯一的点划组合,出现概率最高的字母 e 被编码为一个点“ . ”,而出现概率较低的字母 z 则被编码为“ --.. ”。显然,这可以有效缩短最终的电码长度。
信息论之父 C. E. Shannon 第一次用数学语言阐明了概率与信息冗余度的关系。在 1948 年发表的论文“通信的数学理论( A Mathematical Theory of Communication )”中, Shannon 指出,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关。 Shannon 借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式。这篇伟大的论文后来被誉为信息论的开山之作,信息熵也奠定了所有数据压缩算法的理论基础。从本质上讲,数据压缩的目的就是要消除信息中的冗余,而信息熵及相关的定理恰恰用数学手段精确地描述了信息冗余的程度。利用信息熵公式,人们可以计算出信息编码的极限,即在一定的概率模型下,无损压缩的编码长度不可能小于信息熵公式给出的结果。
有了完备的理论,接下来的事就是要想办法实现具体的算法,并尽量使算法的输出接近信息熵的极限了。当然,大多数工程技术人员都知道,要将一种理论从数学公式发展成实用技术,就像仅凭一个 E=mc 2 的公式就要去制造核武器一样,并不是一件很容易的事。 设计具体的压缩算法的过程通常更像是一场数学游戏。开发者首先要寻找一种能尽量精确地统计或估计信息中符号出现概率的方法,然后还要设计一套用最短的代码描述每个符号的编码规则。统计学知识对于前一项工作相当有效,迄今为止,人们已经陆续实现了静态模型、半静态模型、自适应模型、 Markov 模型、部分匹配预测模型等概率统计模型。相对而言,编码方法的发展历程更为曲折一些。
1948 年, Shannon 在提出信息熵理论的同时,也给出了一种简单的编码方法—— Shannon 编码。 1952 年, R. M. Fano 又进一步提出了 Fano 编码。这些早期的编码方法揭示了变长编码的基本规律,也确实可以取得一定的压缩效果,但离真正实用的压缩算法还相去甚远。
第一个实用的编码方法是由 D. A. Huffman 在 1952 年的论文“最小冗余度代码的构造方法( A Method for the Construction of Minimum Rendancy Codes )”中提出的。直到今天,许多《数据结构》教材在讨论二叉树时仍要提及这种被后人称为 Huffman 编码的方法。 Huffman 编码在计算机界是如此着名,以至于连编码的发明过程本身也成了人们津津乐道的话题。据说, 1952 年时,年轻的 Huffman 还是麻省理工学院的一名学生,他为了向老师证明自己可以不参加某门功课的期末考试,才设计了这个看似简单,但却影响深远的编码方法。
Huffman 编码效率高,运算速度快,实现方式灵活,从 20 世纪 60 年代至今,在数据压缩领域得到了广泛的应用。例如,早期 UNIX 系统上一个不太为现代人熟知的压缩程序 COMPACT 实际就是 Huffman 0 阶自适应编码的具体实现。 20 世纪 80 年代初, Huffman 编码又出现在 CP/M 和 DOS 系统中,其代表程序叫 SQ 。今天,在许多知名的压缩工具和压缩算法(如 WinRAR 、 gzip 和 JPEG )里,都有 Huffman 编码的身影。不过, Huffman 编码所得的编码长度只是对信息熵计算结果的一种近似,还无法真正逼近信息熵的极限。正因为如此,现代压缩技术通常只将 Huffman 视作最终的编码手段,而非数据压缩算法的全部。
科学家们一直没有放弃向信息熵极限挑战的理想。 1968 年前后, P. Elias 发展了 Shannon 和 Fano 的编码方法,构造出从数学角度看来更为完美的 Shannon-Fano-Elias 编码。沿着这一编码方法的思路, 1976 年, J. Rissanen 提出了一种可以成功地逼近信息熵极限的编码方法——算术编码。 1982 年, Rissanen 和 G. G. Langdon 一起改进了算术编码。之后,人们又将算术编码与 J. G. Cleary 和 I. H. Witten 于 1984 年提出的部分匹配预测模型( PPM )相结合,开发出了压缩效果近乎完美的算法。今天,那些名为 PPMC 、 PPMD 或 PPMZ 并号称压缩效果天下第一的通用压缩算法,实际上全都是这一思路的具体实现。
对于无损压缩而言, PPM 模型与算术编码相结合,已经可以最大程度地逼近信息熵的极限。看起来,压缩技术的发展可以到此为止了。不幸的是,事情往往不像想象中的那样简单:算术编码虽然可以获得最短的编码长度,但其本身的复杂性也使得算术编码的任何具体实现在运行时都慢如蜗牛。即使在摩尔定律大行其道, CPU 速度日新月异的今天,算术编码程序的运行速度也很难满足日常应用的需求。没办法,如果不是后文将要提到的那两个犹太人,我们还不知要到什么时候才能用上 WinZIP 这样方便实用的压缩工具呢。 逆向思维永远是科学和技术领域里出奇制胜的法宝。就在大多数人绞尽脑汁想改进 Huffman 或算术编码,以获得一种兼顾了运行速度和压缩效果的“完美”编码的时候,两个聪明的犹太人 J. Ziv 和 A. Lempel 独辟蹊径,完全脱离 Huffman 及算术编码的设计思路,创造出了一系列比 Huffman 编码更有效,比算术编码更快捷的压缩算法。我们通常用这两个犹太人姓氏的缩写,将这些算法统称为 LZ 系列算法。
按照时间顺序, LZ 系列算法的发展历程大致是: Ziv 和 Lempel 于 1977 年发表题为“顺序数据压缩的一个通用算法( A Universal Algorithm for Sequential Data Compression )”的论文,论文中描述的算法被后人称为 LZ77 算法。 1978 年,二人又发表了该论文的续篇“通过可变比率编码的独立序列的压缩( Compression of Indivial Sequences via Variable Rate Coding )”,描述了后来被命名为 LZ78 的压缩算法。 1984 年, T. A. Welch 发表了名为“高性能数据压缩技术( A Technique for High Performance Data Compression )”的论文,描述了他在 Sperry 研究中心(该研究中心后来并入了 Unisys 公司)的研究成果,这是 LZ78 算法的一个变种,也就是后来非常有名的 LZW 算法。 1990 年后, T. C. Bell 等人又陆续提出了许多 LZ 系列算法的变体或改进版本。
说实话, LZ 系列算法的思路并不新鲜,其中既没有高深的理论背景,也没有复杂的数学公式,它们只是简单地延续了千百年来人们对字典的追崇和喜好,并用一种极为巧妙的方式将字典技术应用于通用数据压缩领域。通俗地说,当你用字典中的页码和行号代替文章中每个单词的时候,你实际上已经掌握了 LZ 系列算法的真谛。这种基于字典模型的思路在表面上虽然和 Shannon 、 Huffman 等人开创的统计学方法大相径庭,但在效果上一样可以逼近信息熵的极限。而且,可以从理论上证明, LZ 系列算法在本质上仍然符合信息熵的基本规律。
LZ 系列算法的优越性很快就在数据压缩领域里体现 了 出来,使用 LZ 系列算法的工具软件数量呈爆炸式增长。 UNIX 系统上最先出现了使用 LZW 算法的 compress 程序,该程序很快成为了 UNIX 世界的压缩标准。紧随其后的是 MS-DOS 环境下的 ARC 程序,以及 PKWare 、 PKARC 等仿制品。 20 世纪 80 年代,着名的压缩工具 LHarc 和 ARJ 则是 LZ77 算法的杰出代表。
今天, LZ77 、 LZ78 、 LZW 算法以及它们的各种变体几乎垄断了整个通用数据压缩领域,我们熟悉的 PKZIP 、 WinZIP 、 WinRAR 、 gzip 等压缩工具以及 ZIP 、 GIF 、 PNG 等文件格式都是 LZ 系列算法的受益者,甚至连 PGP 这样的加密文件格式也选择了 LZ 系列算法作为其数据压缩的标准。
没有谁能否认两位犹太人对数据压缩技术的贡献。我想强调的只是,在工程技术领域,片面追求理论上的完美往往只会事倍功半,如果大家能像 Ziv 和 Lempel 那样,经常换个角度来思考问题,没准儿你我就能发明一种新的算法,就能在技术方展史上扬名立万呢。 LZ 系列算法基本解决了通用数据压缩中兼顾速度与压缩效果的难题。但是,数据压缩领域里还有另一片更为广阔的天地等待着我们去探索。 Shannon 的信息论告诉我们,对信息的先验知识越多,我们就可以把信息压缩得越小。换句话说,如果压缩算法的设计目标不是任意的数据源,而是基本属性已知的特种数据,压缩的效果就会进一步提高。这提醒我们,在发展通用压缩算法之余,还必须认真研究针对各种特殊数据的专用压缩算法。比方说,在今天的数码生活中,遍布于数码相机、数码录音笔、数码随身听、数码摄像机等各种数字设备中的图像、音频、视频信息,就必须经过有效的压缩才能在硬盘上存储或是通过 USB 电缆传输。实际上,多媒体信息的压缩一直是数据压缩领域里的重要课题,其中的每一个分支都有可能主导未来的某个技术潮流,并为数码产品、通信设备和应用软件开发商带来无限的商机。
让我们先从图像数据的压缩讲起。通常所说的图像可以被分为二值图像、灰度图像、彩色图像等不同的类型。每一类图像的压缩方法也不尽相同。
传真技术的发明和广泛使用促进了二值图像压缩算法的飞速发展。 CCITT (国际电报电话咨询委员会,是国际电信联盟 ITU 下属的一个机构)针对传真类应用建立了一系列图像压缩标准,专用于压缩和传递二值图像。这些标准大致包括 20 世纪 70 年代后期的 CCITT Group 1 和 Group 2 , 1980 年的 CCITT Group 3 ,以及 1984 年的 CCITT Group 4 。为了适应不同类型的传真图像,这些标准所用的编码方法包括了一维的 MH 编码和二维的 MR 编码,其中使用了行程编码( RLE )和 Huffman 编码等技术。今天,我们在办公室或家里收发传真时,使用的大多是 CCITT Group 3 压缩标准,一些基于数字网络的传真设备和存放二值图像的 TIFF 文件则使用了 CCITT Group 4 压缩标准。 1993 年, CCITT 和 ISO (国际标准化组织)共同成立的二值图像联合专家组( Joint Bi-level Image Experts Group , JBIG )又将二值图像的压缩进一步发展为更加通用的 JBIG 标准。
实际上,对于二值图像和非连续的灰度、彩色图像而言,包括 LZ 系列算法在内的许多通用压缩算法都能获得很好的压缩效果。例如,诞生于 1987 年的 GIF 图像文件格式使用的是 LZW 压缩算法, 1995 年出现的 PNG 格式比 GIF 格式更加完善,它选择了 LZ77 算法的变体 zlib 来压缩图像数据。此外,利用前面提到过的 Huffman 编码、算术编码以及 PPM 模型,人们事实上已经构造出了许多行之有效的图像压缩算法。
但是,对于生活中更加常见的,像素值在空间上连续变化的灰度或彩色图像(比如数码照片),通用压缩算法的优势就不那么明显了。幸运的是,科学家们发现,如果在压缩这一类图像数据时允许改变一些不太重要的像素值,或者说允许损失一些精度(在压缩通用数据时,我们绝不会容忍任何精度上的损失,但在压缩和显示一幅数码照片时,如果一片树林里某些树叶的颜色稍微变深了一些,看照片的人通常是察觉不到的),我们就有可能在压缩效果上获得突破性的进展。这一思想在数据压缩领域具有革命性的地位:通过在用户的忍耐范围内损失一些精度,我们可以把图像(也包括音频和视频)压缩到原大小的十分之一、百分之一甚至千分之一,这远远超出了通用压缩算法的能力极限。也许,这和生活中常说的“退一步海阔天空”的道理有异曲同工之妙吧。
这种允许精度损失的压缩也被称为有损压缩。在图像压缩领域,着名的 JPEG 标准是有损压缩算法中的经典。 JPEG 标准由静态图像联合专家组( Joint Photographic Experts Group , JPEG )于 1986 年开始制定, 1994 年后成为国际标准。 JPEG 以离散余弦变换( DCT )为核心算法,通过调整质量系数控制图像的精度和大小。对于照片等连续变化的灰度或彩色图像, JPEG 在保证图像质量的前提下,一般可以将图像压缩到原大小的十分之一到二十分之一。如果不考虑图像质量, JPEG 甚至可以将图像压缩到“无限小”。
JPEG 标准的最新进展是 1996 年开始制定, 2001 年正式成为国际标准的 JPEG 2000 。与 JPEG 相比, JPEG 2000 作了大幅改进,其中最重要的是用离散小波变换( DWT )替代了 JPEG 标准中的离散余弦变换。在文件大小相同的情况下, JPEG 2000 压缩的图像比 JPEG 质量更高,精度损失更小。作为一个新标准, JPEG 2000 暂时还没有得到广泛的应用,不过包括数码相机制造商在内的许多企业都对其应用前景表示乐观, JPEG 2000 在图像压缩领域里大显身手的那一天应该不会特别遥远。
JPEG 标准中通过损失精度来换取压缩效果的设计思想直接影响了视频数据的压缩技术。 CCITT 于 1988 年制定了电视电话和会议电视的 H.261 建议草案。 H.261 的基本思路是使用类似 JPEG 标准的算法压缩视频流中的每一帧图像,同时采用运动补偿的帧间预测来消除视频流在时间维度上的冗余信息。在此基础上, 1993 年, ISO 通过了动态图像专家组( Moving Picture Experts Group , MPEG )提出的 MPEG-1 标准。 MPEG-1 可以对普通质量的视频数据进行有效编码。我们现在看到的大多数 VCD 影碟,就是使用 MPEG-1 标准来压缩视频数据的。
为了支持更清晰的视频图像,特别是支持数字电视等高端应用, ISO 于 1994 年提出了新的 MPEG-2 标准(相当于 CCITT 的 H.262 标准)。 MPEG-2 对图像质量作了分级处理,可以适应普通电视节目、会议电视、高清晰数字电视等不同质量的视频应用。在我们的生活中,可以提供高清晰画面的 DVD 影碟所采用的正是 MPEG-2 标准。
Internet 的发展对视频压缩提出了更高的要求。在内容交互、对象编辑、随机存取等新需求的刺激下, ISO 于 1999 年通过了 MPEG-4 标准(相当于 CCITT 的 H.263 和 H.263+ 标准)。 MPEG-4 标准拥有更高的压缩比率,支持并发数据流的编码、基于内容的交互操作、增强的时间域随机存取、容错、基于内容的尺度可变性等先进特性。 Internet 上新兴的 DivX 和 XviD 文件格式就是采用 MPEG-4 标准来压缩视频数据的,它们可以用更小的存储空间或通信带宽提供与 DVD 不相上下的高清晰视频,这使我们在 Internet 上发布或下载数字电影的梦想成为了现实。
就像视频压缩和电视产业的发展密不可分一样,音频数据的压缩技术最早也是由无线电广播、语音通信等领域里的技术人员发展起来的。这其中又以语音编码和压缩技术的研究最为活跃。自从 1939 年 H. Dudley 发明声码器以来,人们陆续发明了脉冲编码调制( PCM )、线性预测( LPC )、矢量量化( VQ )、自适应变换编码( ATC )、子带编码( SBC )等语音分析与处理技术。这些语音技术在采集语音特征,获取数字信号的同时,通常也可以起到降低信息冗余度的作用。像图像压缩领域里的 JPEG 一样,为获得更高的编码效率,大多数语音编码技术都允许一定程度的精度损失。而且,为了更好地用二进制数据存储或传送语音信号,这些语音编码技术在将语音信号转换为数字信息之后又总会用 Huffman 编码、算术编码等通用压缩算法进一步减少数据流中的冗余信息。
对于电脑和数字电器(如数码录音笔、数码随身听)中存储的普通音频信息,我们最常使用的压缩方法主要是 MPEG 系列中的音频压缩标准。例如, MPEG-1 标准提供了 Layer I 、 Layer II 和 Layer III 共三种可选的音频压缩标准, MPEG-2 又进一步引入了 AAC ( Advanced Audio Coding )音频压缩标准, MPEG-4 标准中的音频部分则同时支持合成声音编码和自然声音编码等不同类型的应用。在这许多音频压缩标准中,声名最为显赫的恐怕要数 MPEG-1 Layer III ,也就是我们常说的 MP3 音频压缩标准了。从 MP3 播放器到 MP3 手机,从硬盘上堆积如山的 MP3 文件到 Internet 上版权纠纷不断的 MP3 下载, MP3 早已超出了数据压缩技术的范畴,而成了一种时尚文化的象征了。
很显然,在多媒体信息日益成为主流信息形态的数字化时代里,数据压缩技术特别是专用于图像、音频、视频的数据压缩技术还有相当大的发展空间——毕竟,人们对信息数量和信息质量的追求是永无止境的。 从信息熵到算术编码,从犹太人到 WinRAR ,从 JPEG 到 MP3 ,数据压缩技术的发展史就像是一个写满了“创新”、“挑战”、“突破”和“变革”的羊皮卷轴。也许,我们在这里不厌其烦地罗列年代、人物、标准和文献,其目的只是要告诉大家,前人的成果只不过是后人有望超越的目标而已,谁知道在未来的几年里,还会出现几个 Shannon ,几个 Huffman 呢?
谈到未来,我们还可以补充一些与数据压缩技术的发展趋势有关的话题。
1994年, M. Burrows 和 D. J. Wheeler 共同提出了一种全新的通用数据压缩算法。这种算法的核心思想是对字符串轮转后得到的字符矩阵进行排序和变换,类似的变换算法被称为 Burrows-Wheeler 变换,简称 BWT 。与 Ziv 和 Lempel 另辟蹊径的做法如出一辙, Burrows 和 Wheeler 设计的 BWT 算法与以往所有通用压缩算法的设计思路都迥然不同。如今, BWT 算法在开放源码的压缩工具 bzip 中获得了巨大的成功, bzip 对于文本文件的压缩效果要远好于使用 LZ 系列算法的工具软件。这至少可以表明,即便在日趋成熟的通用数据压缩领域,只要能在思路和技术上不断创新,我们仍然可以找到新的突破口。
分形压缩技术是图像压缩领域近几年来的一个热点。这一技术起源于 B. Mandelbrot 于 1977 年创建的分形几何学。 M. Barnsley 在 20 世纪 80 年代后期为分形压缩奠定了理论基础。从 20 世纪 90 年代开始, A. Jacquin 等人陆续提出了许多实验性的分形压缩算法。今天,很多人相信,分形压缩是图像压缩领域里最有潜力的一种技术体系,但也有很多人对此不屑一顾。无论其前景如何,分形压缩技术的研究与发展都提示我们,在经过了几十年的高速发展之后,也许,我们需要一种新的理论,或是几种更有效的数学模型,以支撑和推动数据压缩技术继续向前跃进。
人工智能是另一个可能对数据压缩的未来产生重大影响的关键词。既然 Shannon 认为,信息能否被压缩以及能在多大程度上被压缩与信息的不确定性有直接关系,假设人工智能技术在某一天成熟起来,假设计算机可以像人一样根据已知的少量上下文猜测后续的信息,那么,将信息压缩到原大小的万分之一乃至十万分之一,恐怕就不再是天方夜谭了。
回顾历史之后,人们总喜欢畅想一下未来。但未来终究是未来,如果仅凭你我几句话就可以理清未来的技术发展趋势,那技术创新的工作岂不就索然无味了吗?依我说,未来并不重要,重要的是,赶快到 Internet 上下载几部大片,然后躺在沙发里,好好享受一下数据压缩为我们带来的无限快乐吧。

9. 数据压缩的类型

数据压缩可分成两种类型,一种叫做无损压缩,另一种叫做有损压缩。
无损压缩是指使用压缩后的数据进行重构(或者叫做还原,解压缩),重构后的数据与原来的数据完全相同;无损压缩用于要求重构的信号与原始信号完全一致的场合。一个很常见的例子是磁盘文件的压缩。无损压缩算法一般可以把普通文件的数据压缩到原来的1/2~1/4。一些常用的无损压缩算法有霍夫曼(Huffman)算法和LZW(Lenpel-Ziv & Welch)压缩算法。
有损压缩是指使用压缩后的数据进行重构,重构后的数据与原来的数据有所不同,但不影响人对原始资料表达的信息造成误解。有损压缩适用于重构信号不一定非要和原始信号完全相同的场合。例如,图像和声音的压缩就可以采用有损压缩,因为其中包含的数据往往多于我们的视觉系统和听觉系统所能接收的信息,丢掉一些数据而不至于对声音或者图像所表达的意思产生误解,但可大大提高压缩比。

10. 数据压缩技术分为哪两类使用方法是什么

【导读】数据压缩技术是大数据传输过程中需要采用的一种数据存储方法。那么数据压缩技术分为哪两类?使用方法是什么呢?为此小编今天就来和大家细细聊聊关于数据压缩技术那些事,同时也提醒各位大数据工程师在使用数据压缩过程中的一些注意事项及使用方法。

在数据压缩中,通过使用比原始数据更少的位来对数据进行编码,数据压缩有两种方法:无损压缩,它消除了冗余但不丢失任何原始数据;有损数据压缩,可通过删除不必要或不太重要的信息来修改数据,在大数据的传输和存储中使用数据压缩非常重要,因为它减少了IT部门必须为该数据提供的网络带宽和存储量,同样重要的是,您实际上并不想保留某些类型的大数据,例如作为物联网(IoT)通信数据一部分的设备间握手引起的抖动。

为了最大程度地利用大数据进行数据压缩,您必须知道何时何地使用不同类型的数据压缩工具和公式。选择数据压缩方法时,请牢记以下几条有用的准则:

何时使用无损数据压缩

如果您有一个大数据应用程序,并且无法承受丢失任何数据的麻烦,并且需要解压缩压缩的每个字节的数据,那么您将需要一种无损的数据压缩方法,当您压缩来自数据库的数据时,即使您意味着必须存储更多的数据,也希望进行无损数据压缩。在选择将此数据重新提交到其数据库时,您需要解压缩完整数据,以便它可以与数据库端的数据匹配并进行存储。

何时使用有损数据压缩

有时您不需要或不需要所有数据,例如物联网和网络设备的抖动,您不需要这些数据,只需提供给您业务所需的上下文信息的数据即可。第二个示例是在数据压缩过程的前端可能使用的数据压缩公式中使用人工智能(AI),如果您正在研究一个特定的问题,并且只希望与该问题直接相关的数据,则可以决定让数据压缩公式不包含与该问题无关的任何数据。

如何选择正确的编解码器

一个编解码器是一个硬件,软件的组合,压缩和解压缩数据,所以它在大数据压缩和解压缩操作的核心作用,编解码器有许多种,因此为正确的数据或文件类型选择正确的编解码器很重要,您选择的编解码器类型将取决于您尝试压缩的数据和文件类型,有无损和有损数据的编解码器,也有一些编解码器必须将所有数据文件作为“整体”处理,而其他编解码器可以将数据分割开,以便可以对其进行并行处理,然后在其目的地重新组合,某些编解码器设置用于可视数据,而其他编解码器仅处理音频数据。

为什么数据压缩很重要?

确定将用于大数据的数据压缩类型是大数据操作的重要组成部分,仅在资源端,IT人员就无法承受处理失控和迅速发展的存储的成本,即使必须完整存储数据,也应尽可能地对其进行压缩,也就是说,您可以采取其他步骤来限制存储和处理,以及针对大数据压缩中采用的算法和方法的最适合操作,掌握这些选项是IT部门的关键数据点。

以上就是小编今天给大家整理分享关于“数据压缩技术分为哪两类?使用方法是什么?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

阅读全文

与数据类型匹配的压缩算法相关的资料

热点内容
反函数的加法运算法则 浏览:46
微赞直播用的什么服务器 浏览:542
哪个保皇app可以邀请好友 浏览:319
phpredis管理 浏览:563
程序员培养基地 浏览:674
linux查看bin 浏览:874
float赋值java 浏览:946
android70字体 浏览:941
程序员英文不好行吗 浏览:868
如何使用主机服务器pdf 浏览:701
打开下层文件夹代码 浏览:455
适配平板的app是什么意思 浏览:45
java写一个方法 浏览:682
中原大学php视频教程 浏览:501
冲压模具设计pdf 浏览:690
程序员考哪些证 浏览:233
李世民命令薛收为鱼作赋 浏览:776
阿里云服务器2核8g内存 浏览:157
phpyii框架开发文档 浏览:994
视频监控管理服务器有什么用 浏览:182