导航:首页 > 源码编译 > 数据挖掘算法书籍推荐

数据挖掘算法书籍推荐

发布时间:2025-02-02 00:57:50

① 如何系统地学习数据挖掘

看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大,那么数据挖掘系统的学习过程是怎么样?
磨刀不误砍柴工。在学习数据挖掘之前应该明白几点:
数据挖掘目前在中国的尚未流行开,犹如屠龙之技。
数据初期的准备通常占整个数据挖掘项目工作量的70%左右。
数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。
数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效)
数据挖掘适用于传统的BI(报表、OLAP等)无法支持的领域。
数据挖掘项目通常需要重复一些毫无技术含量的工作。
如果你阅读了以上内容觉得可以接受,那么继续往下看。

学习一门技术要和行业靠拢,没有行业背景的技术如空中楼阁。技术尤其是计算机领域的技术发展是宽泛且快速更替的(十年前做网页设计都能成立公司),一般人没有这个精力和时间全方位的掌握所有技术细节。但是技术在结合行业之后就能够独当一面了,一方面有利于抓住用户痛点和刚性需求,另一方面能够累计行业经验,使用互联网思维跨界让你更容易取得成功。不要在学习技术时想要面面俱到,这样会失去你的核心竞争力。

一、目前国内的数据挖掘人员工作领域大致可分为三类。
数据分析师:在拥有行业数据的电商、金融、电信、咨询等行业里做业务咨询,商务智能,出分析报告。
数据挖掘工程师:在多媒体、电商、搜索、社交等大数据相关行业里做机器学习算法实现和分析。
科学研究方向:在高校、科研单位、企业研究院等高大上科研机构研究新算法效率改进及未来应用。

二、说说各工作领域需要掌握的技能。
(1).数据分析师
需要有深厚的数理统计基础,但是对程序开发能力不做要求。
需要熟练使用主流的数据挖掘(或统计分析)工具如Business Analytics and Business Intelligence Software(SAS)、SPSS、EXCEL等。
需要对与所在行业有关的一切核心数据有深入的理解,以及一定的数据敏感性培养。
经典图书推荐:《概率论与数理统计》、《统计学》推荐David Freedman版、《业务建模与数据挖掘》、《数据挖掘导论》、《SAS编程与数据挖掘商业案例》、《Clementine数据挖掘方法及应用 》、《Excel 2007 VBA参考大全》、《IBM SPSS Statistics 19 Statistical Proceres Companion》等。
(2).数据挖掘工程师
需要理解主流机器学习算法的原理和应用。
需要熟悉至少一门编程语言如(Python、C、C++、Java、Delphi等)。
需要理解数据库原理,能够熟练操作至少一种数据库(Mysql、SQL、DB2、Oracle等),能够明白MapRece的原理操作以及熟练使用Hadoop系列工具更好。
经典图书推荐:《数据挖掘概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《Thinking in C++》、《数据结构》等。
(3).科学研究方向
需要深入学习数据挖掘的理论基础,包括关联规则挖掘 (Apriori和FPTree)、分类算法(C4.5、KNN、Logistic Regression、SVM等) 、聚类算法 (Kmeans、Spectral Clustering)。目标可以先吃透数据挖掘10大算法各自的使用情况和优缺点。
相对SAS、SPSS来说R语言更适合科研人员The R Project for Statistical Computing,因为R软件是完全免费的,而且开放的社区环境提供多种附加工具包支持,更适合进行统计计算分析研究。虽然目前在国内流行度不高,但是强烈推荐。
可以尝试改进一些主流算法使其更加快速高效,例如实现Hadoop平台下的SVM云算法调用平台--web 工程调用hadoop集群。
需要广而深的阅读世界着名会议论文跟踪热点技术。如KDD,ICML,IJCAI,Association for the Advancement of Artificial Intelligence,ICDM 等等;还有数据挖掘相关领域期刊:ACM Transactions on Knowledge Discovery from Data,IEEE Transactions on Knowledge and Data Engineering,Journal of Machine Learning Research Homepage,IEEE Xplore: Pattern Analysis and Machine Intelligence, IEEE Transactions on等。
可以尝试参加数据挖掘比赛培养全方面解决实际问题的能力。如Sig KDD ,Kaggle: Go from Big Data to Big Analytics等。
可以尝试为一些开源项目贡献自己的代码,比如Apache Mahout: Scalable machine learning and data mining ,myrrix等(具体可以在SourceForge或GitHub.上发现更多好玩的项目)。
经典图书推荐:《机器学习》 《模式分类》《统计学习理论的本质》《统计学习方法》《数据挖掘实用机器学习技术》《R语言实践》,英文素质是科研人才必备的《Machine Learning: A Probabilistic Perspective》《Scaling up Machine Learning : Parallel and Distributed Approaches》《Data Mining Using SAS Enterprise Miner : A Case Study Approach》《Python for Data Analysis》等。

三、以下是通信行业数据挖掘工程师的工作感受。

真正从数据挖掘项目实践的角度讲,沟通能力对挖掘的兴趣爱好是最重要的,有了爱好才可以愿意钻研,有了不错的沟通能力,才可以正确理解业务问题,才能正确把业务问题转化成挖掘问题,才可以在相关不同专业人才之间清楚表达你的意图和想法,取得他们的理解和支持。所以我认为沟通能力和兴趣爱好是个人的数据挖掘的核心竞争力,是很难学到的;而其他的相关专业知识谁都可以学,算不上个人发展的核心竞争力。

说到这里可能很多数据仓库专家、程序员、统计师等等都要扔砖头了,对不起,我没有别的意思,你们的专业对于数据挖掘都很重要,大家本来就是一个整体的,但是作为单独一个个体的人来说,精力有限,时间有限,不可能这些领域都能掌握,在这种情况下,选择最重要的核心,我想应该是数据挖掘技能和相关业务能力吧(从另外的一个极端的例子,我们可以看, 比如一个迷你型的挖掘项目,一个懂得市场营销和数据挖掘技能的人应该可以胜任。这其中他虽然不懂数据仓库,但是简单的Excel就足以胜任高打6万个样本的数据处理;他虽然不懂专业的展示展现技能,但是只要他自己看的懂就行了,这就无需什么展示展现;前面说过,统计技能是应该掌握的,这对一个人的迷你项目很重要;他虽然不懂编程,但是专业挖掘工具和挖掘技能足够让他操练的;这样在迷你项目中,一个懂得挖掘技能和市场营销业务能力的人就可以圆满完成了,甚至在一个数据源中根据业务需求可以无穷无尽的挖掘不同的项目思路,试问就是这个迷你项目,单纯的一个数据仓库专家、单纯的一个程序员、单纯的一个展示展现技师、甚至单纯的一个挖掘技术专家,都是无法胜任的)。这从另一个方面也说明了为什么沟通能力的重要,这些个完全不同的专业领域,想要有效有机地整合在一起进行数据挖掘项目实践,你说没有好的沟通能力行吗?

数据挖掘能力只能在项目实践的熔炉中提升、升华,所以跟着项目学挖掘是最有效的捷径。国外学习挖掘的人都是一开始跟着老板做项目,刚开始不懂不要紧,越不懂越知道应该学什么,才能学得越快越有效果。我不知道国内的数据挖掘学生是怎样学的,但是从网上的一些论坛看,很多都是纸上谈兵,这样很浪费时间,很没有效率。

另外现在国内关于数据挖掘的概念都很混乱,很多BI只是局限在报表的展示和简单的统计分析,却也号称是数据挖掘;另一方面,国内真正规模化实施数据挖掘的行业是屈指可数(银行、保险公司、移动通讯),其他行业的应用就只能算是小规模的,比如很多大学都有些相关的挖掘课题、挖掘项目,但都比较分散,而且都是处于摸索阶段,但是我相信数据挖掘在中国一定是好的前景,因为这是历史发展的必然。

讲到移动方面的实践案例,如果你是来自移动的话,你一定知道国内有家叫华院分析的公司(申明,我跟这家公司没有任何关系,我只是站在数据挖掘者的角度分析过中国大多数的号称数据挖掘服务公司,觉得华院还不错,比很多徒有虚名的大公司来得更实际),他们的业务现在已经覆盖了绝大多数中国省级移动公司的分析挖掘项目,你上网搜索一下应该可以找到一些详细的资料吧。我对华院分析印象最深的一点就是2002年这个公司白手起家,自己不懂不要紧,一边自学一边开始拓展客户,到现在在中国的移动通讯市场全面开花,的确佩服佩服呀。他们最开始都是用EXCEL处理数据,用肉眼比较选择比较不同的模型,你可以想象这其中的艰难吧。

至于移动通讯的具体的数据挖掘的应用,那太多了,比如不同话费套餐的制订、客户流失模型、不同服务交叉销售模型、不同客户对优惠的弹性分析、客户群体细分模型、不同客户生命周期模型、渠道选择模型、恶意欺诈预警模型,太多了,记住,从客户的需求出发,从实践中的问题出发,移动中可以发现太多的挖掘项目。最后告诉你一个秘密,当你数据挖掘能力提升到一定程度时,你会发现无论什么行业,其实数据挖掘的应用有大部分是重合的相似的,这样你会觉得更轻松。

② 【附pdf】学人工智能必看的10本经典书籍!!

探索人工智能世界,掌握核心知识是关键。以下是一系列推荐的必读经典书籍,它们将助力你踏上人工智能的学习之旅:


1. 《机器学习》(周志华着):这部入门级经典之作,覆盖了监督学习、无监督学习等基础概念和算法。


2. 《统计学习方法》(李航着):深入讲解常用统计学习方法,如感知器和决策树等。


3. 《深度学习》(花书) (Ian Goodfellow等着):深度解析深度学习理论和实践,如深度神经网络和卷积神经网络。


4. 《Python机器学习基础教程》(Andreas C. Müller和Sarah Guido着):带你掌握Python在机器学习中的应用,涉及数据预处理、模型选择等。


5. 《数据挖掘概念与技术》(Han, Jiawei和Kamber, Micheline着):涵盖了数据挖掘的基础概念和技术,如聚类和关联规则挖掘。


6. 《机器学习实战》(Peter Harrington着):通过Python实践,体验常见算法的实战案例。


7. 《深度学习实战》(Aurélien Géron着):专注于TensorFlow的深度学习应用,如卷积神经网络等。


8. 《机器学习算法原理与编程实践》(张志华着):深入理解算法原理,包括线性回归、决策树等。


9. 《Python数据科学手册》(Jake VanderPlas着):全面展示Python在数据科学领域的应用,涵盖数据处理和可视化。


10. 《人工智能——一种现代的方法》(Stuart Russell和Peter Norvig着):深入探讨人工智能的理论、方法和应用,包括自然语言处理等领域。


通过这些书籍,你将建立起坚实的基础,但别忘了,实践和跟进最新技术动态同样重要。不断积累经验,你的人工智能之路将更加宽广。

③ 求高手推荐学习数据挖掘的方法以及详细的学习过程。

个人建议如下:
第一阶段:掌握数据挖掘的基本概念和方法。先对数据挖掘有一个概念的认识,并掌握基本的算法,如分类算法、聚类算法、协同过滤算法等。
参考书:《数据挖掘概念和技术》(第三版)范明,孟小峰 译着。
第二阶段:掌握大数据时代下的数据挖掘和分布式处理算法。现在已经进入大数据时代,传统的数据挖掘算法已经不适用于
参考书:《大数据:互联网大规模数据挖掘和分布式处理》 王斌 译着。
第三阶段:使用Hadoop进行大数据挖掘。Hadoop里面有一个Mahout组件,几乎包括了所有的数据挖掘算法,包括分类、聚类、关联规则等。
参考书:Hadoop实战(第二版).陆嘉恒 着。
另外,数据挖掘是数据库技术、人工智能技术、机器学习技术、统计学习理论、数据可视化等一系列技术的综合,所以,要想学好数据挖掘,这些技术也得懂的呀。
推荐入门时先看浙江大学王灿老师的数据挖掘课程,网上搜下。
期待与你一起学习数据挖掘,共同揭开数据之美。望采纳。

④ 机器学习,数据挖掘的书有哪些

说到数据分析,人们往往会下意识地联想到另一个耳熟能详的名词:数据挖掘。那么,到底什么是数据挖掘呢?顾名思义,数据挖掘就是对数据进行处理,并从中提取可用信息的过程。如果你刚好正在寻找这方面的入门书籍,那么韩家炜老师写的《数据挖掘:概念与技术》绝对是一个不错的选择。

· 更难能可贵的是,随书还附带了一批可运行的神经网络实例。试试亲自上手改改代码吧,相信你会有意外的收获。

⑤ 谁有 数据挖掘算法与R语言实现,谁有这个教材的网盘资源

网络网盘数据挖掘算法与R语言实现高清在线观看

https://pan..com/s/1BsS3NJbgRDgu_4ygn6gLPApwd=1234

提取码:1234

内容简介

本书在介绍R软件基本功能的基础上,介绍了数据挖掘十大经典算法的基本原理及相应的R语言实现范例,旨在使读者能够仿照范例快速掌握大数据分析的方法,从高维海量数据中挖掘有用的信息,使用合适的数据挖掘算法,解决实际问题。全书内容共12章,分别介绍R软件的使用方法、C4.5算法、k-means算法、CART算法、Apriori算法、EM算法、PageRank算法、

⑥ 数据挖掘的十大经典算法,总算是讲清楚了,想提升自己的赶快收藏

一个优秀的数据分析师,除了要掌握基本的统计学、数据分析思维、数据分析工具之外,还需要掌握基本的数据挖掘思想,帮助我们挖掘出有价值的数据,这也是数据分析专家和一般数据分析师的差距所在。

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。今天主要分享其中10种经典算法,内容较干,建议收藏备用学习。

1. C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效(相对的CART算法只需要扫描两次数据集,以下仅为决策树优缺点)。

2. The k-means algorithm 即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。

3. Support vector machines

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

4. The Apriori algorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5. 最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6. PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7. AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8. kNN: k-nearest neighbor classification

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9. Naive Bayes

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。

同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10. CART: 分类与回归树

CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法(二元切分法);第二个想法是用验证数据进行剪枝(预剪枝、后剪枝)。在回归树的基础上的模型树构建难度可能增加了,但同时其分类效果也有提升。

参考书籍:《机器学习实战》

阅读全文

与数据挖掘算法书籍推荐相关的资料

热点内容
安卓为什么免费使用 浏览:397
加密货币都有哪些平台 浏览:625
python和matlab难度 浏览:388
python爬虫很难学么 浏览:572
小米解压积木可以组成什么呢 浏览:816
为什么滴滴出行app还能用 浏览:564
怎么升级手机android 浏览:922
php权威编程pdf 浏览:994
扣扣加密技巧 浏览:720
苹果如何创建服务器错误 浏览:495
软考初级程序员大题分值 浏览:474
js压缩视频文件 浏览:578
linux如何通过命令创建文件 浏览:991
应用加密app还能访问应用嘛 浏览:434
安卓怎么用支付宝交违章罚款 浏览:665
php面向对象的程序设计 浏览:505
数据挖掘算法书籍推荐 浏览:895
投诉联通用什么app 浏览:152
web服务器变更ip地址 浏览:956
java正则表达式验证邮箱 浏览:362