❶ 求逆矩阵的三种方法
第一种:高斯消元法
高斯消元法是最经典也是最广为人知的一种矩阵求逆方法,但是在现实应用中很少用到高斯消元法来进行矩阵的逆矩阵的求解。(考试或者手算会用到)
高斯消元法有两个版本:行变换版本与列变换版本,在日常应用中行变换应用的更广泛。这两个基本原理都是相同的。
高斯消元法先将矩阵A与单位矩阵I进行连接形成一个新的增广矩阵.
上面的方法在中学比赛或者是考研经常用这种方法,手算一下。
第二种:LU分解法
LU分解法其实是高斯消元法的一种变种算法。LU分解是将矩阵A分解为一个下三角矩阵与一个上三角矩阵的乘积。所谓的三角阵就是一半为零的矩阵。L是下三角矩阵(Lower TriangularMatrix),即主对角线以上的元素全部都是0的矩阵。U是上三角矩阵(Upper Triangular Matrix),即主对角线以下的元素全部都是0的矩阵。
然LU分解是高斯消元法的一种表现形式,但是相对于高斯消元法,LU分解更易于实现并行化。计算机基本用这种方法。比如求 50000*50000的这种大型矩阵。
第三种:SVD分解法
SingularValue Decomposition分解法也叫做奇异值分解,也是线性代数中十分重要的矩阵分解法,同样的能用来求解矩阵的逆矩阵。不同于LU分解中将矩阵A分解为下三角矩阵L与上三角矩阵U的乘积,SVD分解将矩阵A分解为三个矩阵的乘积,分别为:正交矩阵U、对角矩阵W以及正交矩阵V的转置矩阵V.
第四种:QR分解法
QR分解同样将原始矩阵A分解为两个矩阵的乘积,不同的是这两个矩阵分别为正交矩阵Q和上三角矩阵R。
❷ 如何快速求矩阵的逆矩阵
矩阵求逆最简单的办法是用增广矩阵。
矩阵(数学术语):
矩阵,Matrix。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
❸ 矩阵求逆的方法
该算式的解法有4种:高斯消元法、LU分解法、SVD分解法、QR分解法。
1、高斯消元法:高斯消元法是最经典也是最广为人知的一种矩阵求逆方法,高斯消元法有两个版本:行变换版本与列变换版本。
2、LU分解法:LU分解法其实是高斯消元法的一种变种算法。LU分解是将矩阵A分解为一个下三角矩阵与一个上三角矩阵的乘积。所谓的三角阵就是一半为零的矩阵。L是下三角矩阵,即主对角线以上的元素全部都是0的矩阵。U是上三角矩阵,即主对角线以下的元素全部都是0的矩阵。
3、SVD分解法:叫做奇异值分解,也是线性代数中十分重要的矩阵分解法,同样的能用来求解矩阵的逆矩阵。不同于LU分解中将矩阵A分解为下三角矩阵L与上三角矩阵U的乘积,SVD分解将矩阵A分解为三个矩阵的乘积,分别为:正交矩阵U、对角矩阵W以及正交矩阵V的转置矩阵V。
4、QR分解法:QR分解同样将原始矩阵A分解为两个矩阵的乘积,不同的是这两个矩阵分别为正交矩阵Q和上三角矩阵R。