A. 求用C++实现的FFT算法
很早以前的,如果管用别忘了给我加分呀
/*
This computes an in-place complex-to-complex FFT
x and y are the real and imaginary arrays of 2^m points.
dir = 1 gives forward transform
dir = -1 gives reverse transform
*/
short FFT(short int dir,long m,double *x,double *y)
{
long n,i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;
/* Calculate the number of points */
n = 1;
for (i=0;i<m;i++)
n *= 2;
/* Do the bit reversal */
i2 = n >> 1;
j = 0;
for (i=0;i<n-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<n;i+=l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i=0;i<n;i++) {
x[i] /= n;
y[i] /= n;
}
}
return(TRUE);
}
---------------------------------------------------------------------------------
/*****************fft programe*********************/
#include "typedef.h"
#include "math.h"
struct compx EE(struct compx b1,struct compx b2)
{
struct compx b3;
b3.real=b1.real*b2.real-b1.imag*b2.imag;
b3.imag=b1.real*b2.imag+b1.imag*b2.real;
return(b3);
}
void FFT(struct compx *xin,int N)
{
int f,m,nv2,nm1,i,k,j=1,l;
/*int f,m,nv2,nm1,i,k,j=N/2,l;*/
struct compx v,w,t;
nv2=N/2;
f=N;
for(m=1;(f=f/2)!=1;m++){;}
nm1=N-1;
/*变址运算*/
for(i=1;i <=nm1;i++)
{
if(i <j){t=xin[j];xin[j]=xin[i];xin[i]=t;}
k=nv2;
while(k <j){j=j-k;k=k/2;}
j=j+k;
}
{
int le,lei,ip;
float pi;
for(l=1;l <=m;l++)
{ le=pow(2,l);// 这里用的是L而不是1 !!!!
lei =le/2;
pi=3.14159;
v.real=1.0;
v.imag=0.0;
w.real=cos(pi/lei);
w.imag=-sin(pi/lei);
for(j=1;j <=lei;j++)
{
/*double p=pow(2,m-l)*j;
double ps=2*pi/N*p;
w.real=cos(ps);
w.imag=-sin(ps);*/
for(i=j;i <=N;i=i+le)
{ /* w.real=cos(ps);
w.imag=-sin(ps);*/
ip=i+lei;
t=EE(xin[ip],v);
xin[ip].real=xin[i].real-t.real;
xin[ip].imag=xin[i].imag-t.imag;
xin[i].real=xin[i].real+t.real;
xin[i].imag=xin[i].imag+t.imag;
}
v=EE(v,w);
}
}
}
return;
}
/*****************main programe********************/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "typedef.h"
float result[257];
struct compx s[257];
int Num=256;
const float pp=3.14159;
main()
{
int i=1;
for(;i <0x101;i++)
{
s[i].real=sin(pp*i/32);
s[i].imag=0;
}
FFT(s,Num);
for(i=1;i <0x101;i++)
{
result[i]=sqrt(pow(s[i].real,2)+pow(s[i].imag,2));
}
}
-----------------------------------------------------------------------------------
FFT变换 C源代码
FFT C source code (Simple radix-2)
void fft_float (
unsigned NumSamples,
int InverseTransform,
float *RealIn,
float *ImagIn,
float *RealOut,
float *ImagOut )
{
unsigned NumBits; /* Number of bits needed to store indices */
unsigned i, j, k, n;
unsigned BlockSize, BlockEnd;
double angle_numerator = 2.0 * DDC_PI;
double tr, ti; /* temp real, temp imaginary */
if ( !IsPowerOfTwo(NumSamples) )
{
fprintf (
stderr,
"Error in fft(): NumSamples=%u is not power of two\n",
NumSamples );
exit(1);
}
if ( InverseTransform )
angle_numerator = -angle_numerator;
CHECKPOINTER ( RealIn );
CHECKPOINTER ( RealOut );
CHECKPOINTER ( ImagOut );
NumBits = NumberOfBitsNeeded ( NumSamples );
/*
** Do simultaneous data and bit-reversal ordering into outputs...
*/
for ( i=0; i < NumSamples; i++ )
{
j = ReverseBits ( i, NumBits );
RealOut[j] = RealIn;
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn;
}
/*
** Do the FFT itself...
*/
BlockEnd = 1;
for ( BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1 )
{
double delta_angle = angle_numerator / (double)BlockSize;
double sm2 = sin ( -2 * delta_angle );
double sm1 = sin ( -delta_angle );
double cm2 = cos ( -2 * delta_angle );
double cm1 = cos ( -delta_angle );
double w = 2 * cm1;
double ar[3], ai[3];
double temp;
for ( i=0; i < NumSamples; i += BlockSize )
{
ar[2] = cm2;
ar[1] = cm1;
ai[2] = sm2;
ai[1] = sm1;
for ( j=i, n=0; n < BlockEnd; j++, n++ )
{
ar[0] = w*ar[1] - ar[2];
ar[2] = ar[1];
ar[1] = ar[0];
ai[0] = w*ai[1] - ai[2];
ai[2] = ai[1];
ai[1] = ai[0];
k = j + BlockEnd;
tr = ar[0]*RealOut[k] - ai[0]*ImagOut[k];
ti = ar[0]*ImagOut[k] + ai[0]*RealOut[k];
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if ( InverseTransform )
{
double denom = (double)NumSamples;
for ( i=0; i < NumSamples; i++ )
{
RealOut /= denom;
ImagOut /= denom;
}
}
}
int IsPowerOfTwo ( unsigned x )
{
if ( x < 2 )
return FALSE;
if ( x & (x-1) ) // Thanks to 'byang' for this cute trick!
return FALSE;
return TRUE;
}
unsigned NumberOfBitsNeeded ( unsigned PowerOfTwo )
{
unsigned i;
if ( PowerOfTwo < 2 )
{
fprintf (
stderr,
">>> Error in fftmisc.c: argument %d to NumberOfBitsNeeded is too small.\n",
PowerOfTwo );
exit(1);
}
for ( i=0; ; i++ )
{
if ( PowerOfTwo & (1 << i) )
return i;
}
}
unsigned ReverseBits ( unsigned index, unsigned NumBits )
{
unsigned i, rev;
for ( i=rev=0; i < NumBits; i++ )
{
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
double Index_to_frequency ( unsigned NumSamples, unsigned Index )
{
if ( Index >= NumSamples )
return 0.0;
else if ( Index <= NumSamples/2 )
return (double)Index / (double)NumSamples;
return -(double)(NumSamples-Index) / (double)NumSamples;
}
B. 在DSP上实现FFT算法
void FFT( COMPLEX *Y, int N) /* input sample array, number of points */
{
COMPLEX temp1,temp2; /*temporary storage variables */
int i,j,k; /*loop counter variables */
int upper_leg, lower_leg; /*index of upper/lower butterfly leg */
int leg_diff; /*difference between upper/lower leg */
int num_stages=0; /*number of FFT stages, or iterations */
int index, step; /*index and step between twiddle factor*/
/* log(base 2) of # of points = # of stages */
i=1;
do
{
num_stages+=1;
i = i *2 ;
} while (i!=N);
/* starting difference between upper and lower butterfly legs*/
leg_diff = N/2;
/* step between values in twiddle factor array twiddle.h */
step = 512 / N;
/* For N-point FFT */
for ( i = 0 ; i < num_stages ; i++ )
{
index = 0;
for ( j = 0; j < leg_diff ; j++ )
{
for ( upper_leg = j; upper_leg < N ; upper_leg += (2*leg_diff) )
{
lower_leg = upper_leg + leg_diff;
temp1.real=(Y[upper_leg]).real + (Y[lower_leg]).real;
temp1.imag=(Y[upper_leg]).imag + (Y[lower_leg]).imag;
temp2.real=(Y[upper_leg]).real - (Y[lower_leg]).real;
temp2.imag=(Y[upper_leg]).imag - (Y[lower_leg]).imag;
(Y[lower_leg]).real = ((long)temp2.real * (w[index]).real)/8192;
(Y[lower_leg]).real -= ((long)temp2.imag * (w[index]).imag)/8192;
(Y[lower_leg]).imag = ((long)temp2.real * (w[index]).imag)/8192;
(Y[lower_leg]).imag += ((long)temp2.imag * (w[index]).real)/8192;
(Y[upper_leg]).real = temp1.real;
(Y[upper_leg]).imag = temp1.imag;
}
index+=step;
}
leg_diff = leg_diff / 2;
step *= 2;
}
/* bit reversal for resequencing data */
j=0;
for ( i=1 ; i < (N-1) ; i++ )
{
k = N / 2;
while ( k <= j)
{
j = j - k;
k >>= 1;
}
j = j + k;
if ( i < j )
{
temp1.real = (Y[j]).real;
temp1.imag = (Y[j]).imag;
(Y[j]).real = (Y[i]).real;
(Y[j]).imag = (Y[i]).imag;
(Y[i]).real = temp1.real;
(Y[i]).imag = temp1.imag;
}
}
return;
}
参考一下的吧,这个是TI官方的在5416上实现的程序~
C. FFT的算法
FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform),它根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。FFT算法可分为按时间抽取算法和按频率抽取算法,先简要介绍FFT的基本原理。从DFT运算开始,说明FFT的基本原理。
DFT的运算为:
式中
由这种方法计算DFT对于 的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需4N*4N次实数相乘和(4N-2)(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中 的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。
FFT对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N^2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+(N^2)/2。继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。
D. FFT原理的FFT基本原理
FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform)。FFT算法可分为按时间抽取算法和按频率抽取算法,先简要介绍FFT的基本原理。从DFT运算开始,说明FFT的基本原理。
DFT的运算为:
式中
由这种方法计算DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中
的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。
FFT基本上可分为两类,时间抽取法和频率抽取法,而一般的时间抽取法和频率抽取法只能处理长度N=2^M的情况,另外还有组合数基四FFT来处理一般长度的FFT 设N点序列x(n),,将x(n)按奇偶分组,公式如下图
改写为:
一个N点DFT分解为两个 N/2点的DFT,继续分解,迭代下去,其运算量约为
其算法有如下规律
两个4点组成的8点DFT
四个2点组成的8点DFT
按时间抽取的8点DFT
原位计算
当数据输入到存储器中以后,每一级运算的结果仍然储存在同一组存储器中,直到最后输出,中间无需其它存储器
序数重排
对按时间抽取FFT的原位运算结构,当运算完毕时,这种结构存储单元A(1)、A(2),…,A(8)中正好顺序存放着X(0),X(1),X(2),…,X(7),因此可直接按顺序输出,但这种原位运算的输入x(n)却不能按这种自然顺序存入存储单元中,而是按X(0),X(4),X(2),X(6),…,X(7)的顺序存入存储单元,这种顺序看起来相当杂乱,然而它也是有规律的。当用二进制表示这个顺序时,它正好是“码位倒置”的顺序。
蝶形类型随迭代次数成倍增加
每次迭代的蝶形类型比上一次蝶代增加一倍,数据点间隔也增大一倍 频率抽取2FFT算法是按频率进行抽取的算法。
设N=2^M,将x(n)按前后两部分进行分解,
按K的奇偶分为两组,即
得到两个N/2 点的DFT运算。如此分解,并迭代,总的计算量和时间抽取(DIT)基2FFT算法相同。
算法规律如下:
蝶形结构和时间抽取不一样但是蝶形个数一样,同样具有原位计算规律,其迭代次数成倍减小 时,可采取补零使其成为
,或者先分解为两个p,q的序列,其中p*q=N,然后进行计算。 前面介绍,采用FFT算法可以很快算出全部N点DFT值,即z变换X(z)在z平面单位圆上的全部等间隔取样值。实际中也许①不需要计算整个单位圆上z变换的取样,如对于窄带信号,只需要对信号所在的一段频带进行分析,这时希望频谱的采样集中在这一频带内,以获得较高的分辨率,而频带以外的部分可不考虑,②或者对其它围线上的z变换取样感兴趣,例如语音信号处理中,需要知道z变换的极点所在频率,如极点位置离单位圆较远,则其单位圆上的频谱就很平滑,这时很难从中识别出极点所在的频率,如果采样不是沿单位圆而是沿一条接近这些极点的弧线进行,则在极点所在频率上的频谱将出现明显的尖峰,由此可较准确地测定极点频率。③或者要求能有效地计算当N是素数时序列的DFT,因此提高DFT计算的灵活性非常有意义。
螺旋线采样是一种适合于这种需要的变换,且可以采用FFT来快速计算,这种变换也称作Chirp-z变换。
E. FFT运算,在信号处理中是怎样运用的啊
FFT算法实现因为PIC16F877片内有高达368×8位(相当于184×16位)的数据存储器(RAM),故用片内RAM最多可以完成64点FFT(16位实部和虚部数据)。现在仅实现16点FFT,主要是起抛砖引玉的作用。这里的FFT是按频率抽取的。在调用FFT子程序前,输入数据按正常次序输入,而输出数据是经FFT变换整序处理后输出。原始数据被变换后的数据覆盖存放在RAM中,这是通过分解序列实现的;然而分解序列将引起DFT的项序混乱,所以在变换结束,所有的数据需要进行“整序”,以恢复DFT的正常次序。某些应用可以不进行整序;因而整序程序编成子程序形式,当需要时随时可以调用。输入数据为32位,前为16位实部,后为16位虚部,中间结果为32位;输出数据也是前为实部,后为虚部。这样计算的结果具有相当高的精度。
F. FFT的公式是什么和算法是怎样实现
二维FFT相当于对行和列分别进行一维FFT运算。具体的实现办法如下:
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩阵的第i行。注意这只是一个简单的记法,并不能完全照抄。还需要通过一些语句来生成各行的数据。同理,COL[i]是对矩阵的第i列的一种简单表示方法。
所以,关键是一维FFT算法的实现。下面讨论一维FFT的算法原理。
【1D-FFT的算法实现】
设序列h(n)长度为N,将其按下标的奇偶性分成两组,即he和ho序列,它们的长度都是N/2。这样,可以将h(n)的FFT计算公式改写如下 :
(A)
由于
所以,(A)式可以改写成下面的形式:
按照FFT的定义,上面的式子实际上是:
其中,k的取值范围是 0~N-1。
我们注意到He(k)和Ho(k)是N/2点的DFT,其周期是N/2。因此,H(k)DFT的前N/2点和后N/2点都可以用He(k)和Ho(k)来表示
G. 实序列的FFT算法
在以上讨论FFT算法中,均假定序列x(l)为复的,但实际问题中的序列大多为实的。当然,我们可以把实序列处理成虚部为零的复序列。因此,就要引进许多零参加运算。这样一来,在机器运算时间和存储单元方面都将造成很大的浪费。在本段中,我们介绍对实序列x(l)应用FFT算法的一个有效方法。
1.同时计算两个实序列的FFT算法
设有N=4的两个实序列x1(l)与x2(l)。为了求得它们的谱X1(m)与X2(m),我们用此二实序列构造成如下复序列
物探数字信号分析与处理技术
利用上一段的方法,可以求得复序列x(l)的谱X(m)。根据(7-3-1)得到
物探数字信号分析与处理技术
上式中的m用N-m代替,则得
物探数字信号分析与处理技术
将上式两端取共轭,根据对称性有
物探数字信号分析与处理技术
根据DFT的复共轭性质,对于实序列x1(l)与x2(l),有
物探数字信号分析与处理技术
于是从(7-3-4)得到
物探数字信号分析与处理技术
联立求解(7-3-2)和(7-3-6)便得到
物探数字信号分析与处理技术
例如设有两个N=4点的实序列,
物探数字信号分析与处理技术
我们用它们构造一个N=4点的复序列
物探数字信号分析与处理技术
利用FFT算法求X(m),m=0,1,2,3(图7-3-1),
图7-3-1 N=4点的FFT算法流程图
于是得到
物探数字信号分析与处理技术
因此从式(7-3-7)得到
物探数字信号分析与处理技术
物探数字信号分析与处理技术
2.实序列的FFT算法
设有N点的实序列x(l),l=0,1,2,…,N-1。按照点的奇偶编号,将它们分成N/2个点的两个子序列
物探数字信号分析与处理技术
设x1(l)的谱与x2(l)的谱分别为X1(m)与X2(m)
物探数字信号分析与处理技术
其中
于是可以将实序列x(l)的谱X(m),用两个子序列x1(l),x2(l)的谱X1(m),X2(m)来表示
物探数字信号分析与处理技术
其中
物探数字信号分析与处理技术
注意,x1(l),x2(l)与X1(m),X2(m)均以N/2为周期,
利用x1(l)、x2(l)构成如下复序列
物探数字信号分析与处理技术
利用FFT算法可以求得复序列 的谱 。根据(7-3-7)就求得两个实子序列的谱X1(m)与X2(m)
物探数字信号分析与处理技术
有了X1(m),X2(m),根据(7-3-10)就可求得X(m)。以上就是用FFT算法求实序列x(l)的谱X(m)的方法。必须指出,用公式(7-3-10)求X(m)时,第一,两个实子序列的谱X1(m),X2(m)及复序列x珓(l)的谱珘X(m)均是以N/2为周期的周期序列;第二,由于x
(l)是实序列,根据DFT的复共轭性质有X(m)=X*(N-m),m=0,1,…,N/2,故只需求得前(N/2)+1个点的X(m),就得到全部N个点的X(m)了
例如,有N=8点的实序列,
物探数字信号分析与处理技术
首先,按点的奇偶编号分成两个实子序列,
物探数字信号分析与处理技术
其次用它们构造如下复序列,
物探数字信号分析与处理技术
用FFT算法求此复序列的谱 (图7-3-2)
图7-3-2 N=4点的FFT算法流程图
于是得到:
根据周期性,有
物探数字信号分析与处理技术
根据(7-3-12)式,
物探数字信号分析与处理技术
根据周期性,有
物探数字信号分析与处理技术
故最终由(7-3-10)得到
物探数字信号分析与处理技术
H. 怎么用C语言实现FFT算法 呀
float ar[1024],ai[1024];/* 原始数据实部,虚部 */
float a[2050];
void fft(int nn) /* nn数据长度 */
{
int n1,n2,i,j,k,l,m,s,l1;
float t1,t2,x,y;
float w1,w2,u1,u2,z;
float fsin[10]={0.000000,1.000000,0.707107,0.3826834,0.1950903,0.09801713,0.04906767,0.02454123,0.01227154,0.00613588,};
float fcos[10]={-1.000000,0.000000,0.7071068,0.9238796,0.9807853,0.99518472,0.99879545,0.9996988,0.9999247,0.9999812,};
switch(nn)
{
case 1024: s=10; break;
case 512: s=9; break;
case 256: s=8; break;
}
n1=nn/2; n2=nn-1;
j=1;
for(i=1;i<=nn;i++)
{
a[2*i]=ar[i-1];
a[2*i+1]=ai[i-1];
}
for(l=1;l<n2;l++)
{
if(l<j)
{
t1=a[2*j];
t2=a[2*j+1];
a[2*j]=a[2*l];
a[2*j+1]=a[2*l+1];
a[2*l]=t1;
a[2*l+1]=t2;
}
k=n1;
while (k<j)
{
j=j-k;
k=k/2;
}
j=j+k;
}
for(i=1;i<=s;i++)
{
u1=1;
u2=0;
m=(1<<i);
k=m>>1;
w1=fcos[i-1];
w2=-fsin[i-1];
for(j=1;j<=k;j++)
{
for(l=j;l<nn;l=l+m)
{
l1=l+k;
t1=a[2*l1]*u1-a[2*l1+1]*u2;
t2=a[2*l1]*u2+a[2*l1+1]*u1;
a[2*l1]=a[2*l]-t1;
a[2*l1+1]=a[2*l+1]-t2;
a[2*l]=a[2*l]+t1;
a[2*l+1]=a[2*l+1]+t2;
}
z=u1*w1-u2*w2;
u2=u1*w2+u2*w1;
u1=z;
}
}
for(i=1;i<=nn/2;i++)
{
ar[i]=4*a[2*i+2]/nn; /* 实部 */
ai[i]=-4*a[2*i+3]/nn; /* 虚部 */
a[i]=4*sqrt(ar[i]*ar[i]+ai[i]*ai[i]); /* 幅值 */
}
}
(http://..com/question/284943905.html?an=0&si=2)
I. fft算法matlab的实现代码!完整版的!
function result = MyFFT(vector)
result = fft(vector);
J. 基2—fft算法的软件实现(MATLAB代码)
参考网络: clc; clear all; close all; x=ones(1,128); %输入的信号,自己可以改变 %整体运用原位计算 m=nextpow2(x);N=2^m; % 求x的长度对应的2的最低幂次m if length(x)<N x=[x,zeros(1,N-length(x))]; % 若x的长度不是2的幂,补零到2的整数幂 end nxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1; % 求1:2^m数列序号的倒序 y=x(nxd); % 将x倒序排列作为y的初始值 for mm=1:m % 将DFT作m次基2分解,从左到右,对每次分解作DFT运算,共做m级蝶形运算,每一级都有2^(mm-1)个蝶形结 Nz=2^mm;u=1; % 旋转因子u初始化为WN^0=1 WN=exp(-i*2*pi/Nz); % 本次分解的基本DFT因子WN=exp(-i*2*pi/Nz) for j=1:Nz/2 % 本次跨越间隔内的各次蝶形运算,在进行第mm级运算时需要2^(mm-1)个 蝶形 for k=j:Nz:N % 本次蝶形运算的跨越间隔为Nz=2^mm kp=k+Nz/2; % 蝶形运算的两个因子对应单元下标的关系 t=y(kp)*u; % 蝶形运算的乘积项 y(kp)=y(k)-t; % 蝶形运算 y(k)=y(k)+t; % 蝶形运算 end u=u*WN; % 修改旋转因子,多乘一个基本DFT因子WN end end y y1=fft(x) %自己编的FFT跟直接调用的函数运算以后的结果进行对比