Ⅰ 编译程序有哪些主要构成成分它们各自的主要功能是什么
编译过程分为分析和综合两个部分,并进一步划分为词法分析、语法分析、语义分析、代码优化、存储分配和代码生成等六个相继的逻辑步骤。这六个步骤只表示编译程序各部分之间的逻辑联系,而不是时间关系。
编译过程既可以按照这六个逻辑步骤顺序地执行,也可以按照平行互锁方式去执行。在确定编译程序的具体结构时,常常分若干遍实现。对于源程序或中间语言程序,从头到尾扫视一次并实现所规定的工作称作一遍。每一遍可以完成一个或相连几个逻辑步骤的工作。
例如,可以把词法分析作为第一遍;语法分析和语义分析作为第二遍;代码优化和存储分配作为第三遍;代码生成作为第四遍。
反之,为了适应较小的存储空间或提高目标程序质量,也可以把一个逻辑步骤的工作分为几遍去执行。例如,代码优化可划分为代码优化准备工作和实际代码优化两遍进行。
(1)编译程序由哪些逻辑部分组成扩展阅读
从左至右逐个字符地对源程序进行扫描,产生一个个的单词符号,把作为字符串的源程序改造成为单词符号串的中间程序。执行词法分析的程序称为词法分析程序或扫描器。
源程序中的单词符号经扫描器分析,一般产生二元式:单词种别;单词自身的值。单词种别通常用整数编码,如果一个种别只含一个单词符号,那么对这个单词符号,种别编码就完全代表它自身的值了。若一个种别含有许多个单词符号,那么,对于它的每个单词符号,除了给出种别编码以外,还应给出自身的值。
词法分析器一般来说有两种方法构造:手工构造和自动生成。手工构造可使用状态图进行工作,自动生成使用确定的有限自动机来实现。
编译程序的语法分析器以单词符号作为输入,分析单词符号串是否形成符合语法规则的语法单位,如表达式、赋值、循环等,最后看是否构成一个符合要求的程序,按该语言使用的语法规则分析检查每条语句是否有正确的逻辑结构,程序是最终的一个语法单位。编译程序的语法规则可用上下文无关文法来刻画。
Ⅱ 编译原理有有符号un-1.u=un吗
编译程序把源程序翻译为目标程序。根据源程序的语言种类,翻译程序可以分为汇编程序与编译程序。与之相对,解释程序是对源程序进行解释执行的程序。相应的可以将高级语言分为
编译型 C/C++, Swift, etc.
解释型 Python, javascript, etc.
混合型 Java, etc.
本文重点放在编译程序的设计上。典型的编译程序具有 7 77 个逻辑部分
对源程序扫描一次被称为一遍 (pass)。典型的一遍扫描编译程序有如下形式
通常将中间代码生成前的分析部分称为编译器的前端,其后的综合部分则被称为后端。这样就把一个编译程序分为了与源语言相关和与目标机有关的两个独立的部分,降低了程序的耦合。假设 llvm 编译器 支持 M MM 种源语言到 N NN 种目标语言的编译
传统的编译器如 gcc 可能需要开发 M × N M \times NM×N 个不同的子模块。而 llvm 使用统一的中间语言 llvm Intermediate Representation 只需要 M MM 个前端与 N NN 个后端,大大降低了开发成本。
文法
设非空有穷集合 Σ \SigmaΣ 为一字母表,则其上的符号串为 ∀ s ∈ Σ ∗ \forall s \in \Sigma^*∀s∈Σ
∗
,其中 ∗ *∗ 表示集合的闭包。特别的记 Σ 0 = ε \Sigma^0 = {\varepsilon}Σ
0
=ε 为空串组成的集合。规则通常写作
U : : = x or U → x , ∣ U ∣ = 1 , ∣ x ∣ ≥ 0 U ::= x\text{ or }U\rightarrow x,\quad |U| = 1, |x| \ge 0U::=x or U→x,∣U∣=1,∣x∣≥0
其中左部 U UU 是符号,右部 x xx 是有穷符号串。规则的集合 P PP 即可确定一个文法 G GG
<程序> ::= <常量说明><变量说明><函数说明>
<常量说明> ::= {const<常量定义>;}
<常量定义> ::= int<标识符>=<整数>{,<标识符>=<整数>}|char<标识符>=<字符>{,<标识符>=<字符>}
<变量说明> ::= {<类型标识符><变量定义>;}
<变量定义> ::= <标识符>[<下标>]{,<标识符>[<下标>]}
<下标> ::= '['<无符号整数>']' // <无符号整数>表示数组元素的个数,其值需大于0
<函数说明> ::= {(<类型标识符>|void)<函数定义>}void<主函数>
<函数定义> ::= <标识符>'('<参数表>')'<复合语句>
<参数表> ::= [<类型标识符><标识符>{,<类型标识符><标识符>}]
<主函数> ::= main'('')'<复合语句>
<复合语句> ::= '{'<常量说明><变量说明>{<语句>}'}'
<语句> ::= <条件语句>|'{'{<语句>}'}'|<函数调用语句>;|<赋值语句>;|<读语句>;|<写语句>;|<返回语句>;|;
<条件语句> ::= <if语句>|<while语句>|<do语句>|<for语句>
<if语句> ::= if'('<条件>')'<语句>[else<语句>]
<while语句> ::= while'('<条件>')'<语句>
<do语句> ::= do<语句>while'('<条件>')'
<for语句> ::= for'('<标识符>=<表达式>;<条件>;<标识符>=<标识符><加法运算符><无符号整数>')'<语句>
<条件> ::= <表达式>[<关系运算符><表达式>] // 表达式为0条件为假,否则为真
<函数调用语句> ::= <标识符>'('[<表达式>{,<表达式>}]')'
<赋值语句> ::= <标识符>['['<表达式>']']=<表达式>
<读语句> ::= scanf'('<标识符>{,<标识符>}')'
<写语句> ::= printf'('<字符串>[,<表达式>]')'|printf'('<表达式>')'
<返回语句> ::= return['('<表达式>')']
<表达式> ::= [<加法运算符>]<项>{<加法运算符><项>} // [+|-]只作用于第一个<项>
<项> ::= <因子>{<乘法运算符><因子>}
<因子> ::= <标识符>['['<表达式>']']|'('<表达式>')'|<整数>|<字符>|<函数调用语句>
<整数> ::= [<加法运算符>]<无符号整数>
<标识符> ::= <字母>{<字母>|<数字>}
<无符号整数> ::= <非零数字>{<数字>}|0
<数字> ::= 0|<非零数字>
<非零数字> ::= 1|...|9
<字符> ::= '<加法运算符>'|'<乘法运算符>'|'<字母>'|'<数字>'
<字符串> ::= "{十进制编码为32,33,35-126的ASCII字符}"
<类型标识符> ::= int|char
<加法运算符> ::= +|-
<乘法运算符> ::= *|/
<关系运算符> ::= <|<=|>|>=|!=|==
<字母> ::= _|a|...|z|A|...|Z
复制
上述文法使用扩充的 BNF 表示法进行描述
符号 定义 说明
∣ \vert∣ 或 作用域由括号限定
{ t } n m \{t\}^m_n{t}
n
m
将 t tt 重复连接 n ∼ m n \sim mn∼m 次 缺省时 m = ∞ , n = 0 m = \infin,\ n = 0m=∞, n=0
[ t ] [t][t] 符号串 t tt 可有可无 等价于 { t } 1 \{t\}^1{t}
1
( t ) (t)(t) 局部作用域 主要用于限定 ∣ \vert∣ 范围
相关概念有
概念 符号 定义 示例
识别符号 Z ZZ 文法中第一条规则的左部符号 <程序>
字汇表 V VV 文法中出现的全部符号 { <程序>, <常量说明>, …, 0, 1, … }
非终结符号集 V n V_nV
n
全部规则的左部组成的集合 { <程序>, <常量说明>, <变量说明>, … }
终结符号集 V t V_tV
t
V − V n V - V_nV−V
n
{ 0, 1, …, _, a, b, … }
设 U : : = u ∈ P U ::= u \in PU::=u∈P 则对于 ∀ x , y ∈ V ∗ \forall x, y \in V^*∀x,y∈V
∗
有直接推导 x U y ⇒ x u y xUy \Rightarrow xuyxUy⇒xuy 。如果 y ∈ V t ∗ y \in V_t^*y∈V
t
∗
则 x U y ⤃ x u y xUy\ ⤃\ xuyxUy ⤃ xuy 称为规范推导。直接推导序列 u 0 ⇒ u 1 ⇒ ⋯ ⇒ u n u_0 \Rightarrow u_1 \Rightarrow \cdots \Rightarrow u_nu
0
⇒u
1
⇒⋯⇒u
n
可简记为
{ u 0 ⇒ + u n n > 0 u 0 ⇒ ∗ u n n ≥ 0 \begin{cases} u_0 \mathop\Rightarrow\limits^+ u_n & n > 0\\ u_0 \mathop\Rightarrow\limits^* u_n & n \ge 0\\ \end{cases}{
u
0
⇒
+
u
n
u
0
⇒
∗
u
n
n
>
0
n
≥
0
进一步定义
句型 V ∗ ∋ x ⇐ ∗ Z V^* \ni x \mathop\Leftarrow\limits^* ZV
∗
∋x
⇐
∗
Z
句子 V t ∗ ∋ x ⇐ + Z V_t^* \ni x \mathop\Leftarrow\limits^+ ZV
t
∗
∋x
⇐
+
Z
语言 L ( G ) = { x ∣ x is sentence } L(G) = \{ x| x\text{ is sentence} \}L(G)={x∣x is sentence}
如果文法 G GG 和 G ′ G'G
′
有 L ( G ) = L ( G ′ ) L(G) = L(G')L(G)=L(G
′
) ,则称这两个文法等价。设 w = x u y w=xuyw=xuy 为一句型,称 u uu 为一个相对于 U ∈ V n U \in V_nU∈V
n
的
w ww 的短语 如果 Z ⇒ ∗ x U y ∧ U ⇒ + u Z \mathop\Rightarrow\limits^* xUy \land U \mathop\Rightarrow\limits^+ uZ
⇒
∗
xUy∧U
⇒
+
u
w ww 的简单短语 如果 u uu 是短语且 U ⇒ u U \mathop\Rightarrow\limits uU⇒u
句型的最左简单短语称为句柄。
二义性
文法 G GG 是二义性的,如果 ∃ x ∈ L ( G ) \exist x \in L(G)∃x∈L(G) 使下列条件之一成立
x xx 可以对应两颗不同的语法树
x xx 有两个不同的规范推导
Ⅲ 一个C++程序是由哪几个部分构成的其中的每一部分起什么作用
1、头文件,每个程序都开头一堆#include,#define符号,#pragma编译开关
2、类型声明和全局变量,用于全局声明类、结构、枚举的定义,也可以设置全局变量
3、函数,即程序执行的具体过程、顺序、逻辑定义
Ⅳ 典型的编译器可以划分成几个主要的逻辑阶段
这是我们今天的作业,
典型的编译器可以划分成七个主要的逻辑阶段,分别是词法分析器、语法分析器、语义分析器、中间代码生成器、独立于机器的代码优化器、代码生成器、依赖于机器的代码优化器。各阶段的主要功能:
(1)词法分析器:词法分析阅读构成源程序的字符流,按编程语言的词法规则把它们组成词法记号流。
(2)语法分析器:按编程语言的语法规则检查词法分析输出的记号流是否符合这些规则,并依据这些规则所体现出的该语言的各种语言构造的层次性,用各记号的第一元建成一种树形的中间表示,这个中间表示用抽象语法的方式描绘了该记号流的语法情况。
(3)语义分析器:使用语法树和符号表中的信息,依据语言定义来检查源程序的语义一致性,以保证程序各部分能有意义地结合在一起。它还收集类型信息,把它们保存在符号表或语法树中。
(4)中间代码生成器:为源程序产生更低级的显示中间表示,可以认为这种中间表示是一种抽象机的程序。
(5)独立于机器的代码优化器:试图改进中间代码,以便产生较好的目标代码。通常,较好是指执行较快,但也可能是其他目标,如目标代码较短或目标代码执行时能耗较低。
(6)代码生成器:取源程序的一种中间表示作为输入并把它映射到一种目标语言。如果目标语言是机器代码,则需要为源程序所用的变量选择寄存器或内存单元,然后把中间指令序列翻译为完成同样任务的机器指令序列。
(7)依赖于机器的代码优化器:试图改进目标机器代码,以便产生较好的目标机器代码。