1. 棋盘覆盖算法
import java.util.*;
public class TestChessBoard {
public static void main(String[] args) {
int tr=0,tc=0,dr=1,dc=2,size=8;
ChessBoard.chessBoard(tr,tc,dr,dc,size);
ChessBoard.display();
}
}
class ChessBoard {
public static int tile = 0;
public static int[][] board= new int[10][10];
public static void chessBoard (int tr,int tc,int dr,int dc,int size) {
if(size == 1) return;
int t = tile++ , s = size/2;
if(dr<tr+s && dc<tc+s){
chessBoard(tr,tc,dr,dc,s);
}else {
board[tr+s-1][tc+s-1] = t;
chessBoard(tr,tc,tr+s-1,tc+s-1,s);
}
if(dr<tr+s && dc>=tc+s){
chessBoard(tr,tc+s,dr,dc,s);
}else {
board[tr+s-1][tc+s] = t;
chessBoard(tr,tc+s,tr+s-1,tc+s,s);
}
if(dr>=tr+s && dc<tc+s) {
chessBoard(tr+s,tc,dr,dc,s);
}else {
board[tr+s][tc+s-1] = t;
chessBoard(tr+s,tc,tr+s,tc+s-1,s);
}
if(dr>=tr+s && dc>=tc+s) {
chessBoard(tr+s,tc+s,dr,dc,s);
}else {
board[tr+s][tc+s] = t;
chessBoard(tr+s,tc+s,tr+s,tc+s,s);
}
}
public static void display() {
for(int i=0;i<8;i++){
for(int j=0;j<8;j++) {
System.out.print(" "+board[i][j]);
}
System.out.println();
}
}
}
2. 分治算法——汉诺塔问题
一、分治算法概念
“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换) 。
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
二、分治法的设计思想
将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
三、分治策略
对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
四、分治法实现步骤
①分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;②解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;③合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下: Divide-and-Conquer(P) 1. if |P|≤n0 2. then return(ADHOC(P)) 3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk 4. for i←1 to k 5. do yi ← Divide-and-Conquer(Pi) 递归解决Pi 6. T ← MERGE(y1,y2,…,yk) 合并子问题 7. return(T)
五、可使用分治法求解的一些经典问题 (1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔
3. 棋盘覆盖问题的算法分析
设T(k)是算法ChessBoard覆盖一个2^k×2^k棋盘所需时间,从算法的划分
策略可知,T(k)满足如下递推式:
T(k) = 1 当k=0时
T(k) = 4T(k-1) 当k>0时
解此递推式可得T(k)=O(4^k)。
4. 分治算法几个经典例子
分治法,字面意思是“分而治之”,就是把一个复杂的1问题分成两个或多个相同或相似的子问题,再把子问题分成更小的子问题直到最后子问题可以简单地直接求解,原问题的解即子问题的解的合并,这个思想是很多高效算法的基础。
图二
大整数乘法
Strassen矩阵乘法
棋盘覆盖
合并排序
快速排序
线性时间选择
最接近点对问题
循环赛日程表
汉诺塔
5. 棋盘覆盖问题的算法实现
下面讨论棋盘覆盖问题中数据结构的设计。
(1)棋盘:可以用一个二维数组board[size][size]表示一个棋盘,其中,size=2^k。为了在递归处理的过程中使用同一个棋盘,将数组board设为全局变量;
(2)子棋盘:整个棋盘用二维数组board[size][size]表示,其中的子棋盘由棋盘左上角的下标tr、tc和棋盘大小s表示;
(3)特殊方格:用board[dr][dc]表示特殊方格,dr和dc是该特殊方格在二维数组board中的下标;
(4) L型骨牌:一个2^k×2^k的棋盘中有一个特殊方格,所以,用到L型骨牌的个数为(4^k-1)/3,将所有L型骨牌从1开始连续编号,用一个全局变量t表示。
设全局变量t已初始化为0,分治法求解棋盘覆盖问题的算法用C++语言描述如下:
void ChessBoard(int tr, int tc, int dr, int dc, int size)
{
int s, t1; //t1表示本次覆盖所用L型骨牌的编号
if (size == 1) return; //棋盘只有一个方格且是特殊方格
t1 = ++t; // L型骨牌编号
s = size/2; // 划分棋盘
if (dr < tr + s && dc < tc + s) //特殊方格在左上角子棋盘中
ChessBoard(tr, tc, dr, dc, s); //递归处理子棋盘
else{ //用 t1号L型骨牌覆盖右下角,再递归处理子棋盘
board[tr + s - 1][tc + s - 1] = t1;
ChessBoard(tr, tc, tr+s-1, tc+s-1, s);
}
if (dr < tr + s && dc >= tc + s) //特殊方格在右上角子棋盘中
ChessBoard(tr, tc+s, dr, dc, s); //递归处理子棋盘
else { //用 t1号L型骨牌覆盖左下角,再递归处理子棋盘
board[tr + s - 1][tc + s] = t1;
ChessBoard(tr, tc+s, tr+s-1, tc+s, s);
}
if (dr >= tr + s && dc < tc + s) //特殊方格在左下角子棋盘中
ChessBoard(tr+s, tc, dr, dc, s); //递归处理子棋盘
else { //用 t1号L型骨牌覆盖右上角,再递归处理子棋盘
board[tr + s][tc + s - 1] = t1;
ChessBoard(tr+s, tc, tr+s, tc+s-1, s);
}
if (dr >= tr + s && dc >= tc + s) //特殊方格在右下角子棋盘中
ChessBoard(tr+s, tc+s, dr, dc, s); //递归处理子棋盘
else { //用 t1号L型骨牌覆盖左上角,再递归处理子棋盘
board[tr + s][tc + s] = t1;
ChessBoard(tr+s, tc+s, tr+s, tc+s, s);
}
}