一.基本算法:
枚举. (poj1753,poj2965)
贪心(poj1328,poj2109,poj2586)
递归和分治法.
递推.
构造法.(poj3295)
模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
图的深度优先遍历和广度优先遍历.
最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓扑排序 (poj1094)
二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
串 (poj1035,poj3080,poj1936)
排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
简单并查集的应用.
哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼树(poj3253)
堆
trie树(静态建树、动态建树) (poj2513)
四.简单搜索
深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
背包问题. (poj1837,poj1276)
型如下表的简单DP(可参考lrj的书 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
几何公式.
叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)
中级(校赛压轴及省赛中等难度):
一.基本算法:
C++的标准模版库的应用. (poj3096,poj3007)
较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
差分约束系统的建立和求解. (poj1201,poj2983)
最小费用最大流(poj2516,poj2516,poj2195)
双连通分量(poj2942)
强连通分支及其缩点.(poj2186)
图的割边和割点(poj3352)
最小割模型、网络流规约(poj3308)
三.数据结构.
线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)
静态二叉检索树. (poj2482,poj2352)
树状树组(poj1195,poj3321)
RMQ. (poj3264,poj3368)
并查集的高级应用. (poj1703,2492)
KMP算法. (poj1961,poj2406)
四.搜索
最优化剪枝和可行性剪枝
搜索的技巧和优化 (poj3411,poj1724)
记忆化搜索(poj3373,poj1691)
五.动态规划
较为复杂的动态规划(如动态规划解特别的旅行商TSP问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
记录状态的动态规划. (POJ3254,poj2411,poj1185)
树型动态规划(poj2057,poj1947,poj2486,poj3140)
六.数学
组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
随机化算法(poj3318,poj2454)
杂题(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.
坐标离散化.
扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
多边形的内核(半平面交)(poj3130,poj3335)
几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高级(regional中等难度):
一.基本算法要求:
代码快速写成,精简但不失风格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
保证正确性和高效性. poj3434
二.图算法:
度限制最小生成树和第K最短路. (poj1639)
最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
最优比率生成树. (poj2728)
最小树形图(poj3164)
次小生成树.
无向图、有向图的最小环
三.数据结构.
trie图的建立和应用. (poj2778)
LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法(RMQ+dfs)).(poj1330)
双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的). (poj2823)
左偏树(可合并堆).
后缀树(非常有用的数据结构,也是赛区考题的热点).(poj3415,poj3294)
四.搜索
较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)
五.动态规划
需要用数据结构优化的动态规划.(poj2754,poj3378,poj3017)
四边形不等式理论.
较难的状态DP(poj3133)
六.数学
组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
博奕论.
1.极大极小过程(poj3317,poj1085)
2.Nim问题.
七.计算几何学.
半平面求交(poj3384,poj2540)
可视图的建立(poj2966)
点集最小圆覆盖.
对踵点(poj2079)
Ⅱ 程序员必须掌握哪些算法
A搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。
集束搜索(又名定向搜索,BeamSearch)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。
二分查找(BinarySearch)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。
分支界定算法(BranchandBound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。
Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。
数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。
Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。
Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
离散微分算法(Discretedifferentiation)
动态规划算法(DynamicProgramming)——展示互相覆盖的子问题和最优子架构算法
欧几里得算法(Euclideanalgorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。
期望-最大算法(Expectation-maximizationalgorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。
快速傅里叶变换(FastFouriertransform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。
梯度下降(Gradientdescent)——一种数学上的最优化算法。
哈希算法(Hashing)
堆排序(Heaps)
Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。
LLL算法(Lenstra-Lenstra-Lovaszlatticerection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。
最大流量算法(Maximumflow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flowmin-cuttheorem)。Ford-Fulkerson能找到一个流网络中的最大流。
合并排序(MergeSort)
牛顿法(Newton'smethod)——求非线性方程(组)零点的一种重要的迭代法。
Q-learning学习算法——这是一种通过学习动作值函数(action-valuefunction)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。
两次筛法(QuadraticSieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法NumberFieldSieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。
RANSAC——是“RANdomSAmpleConsensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。
RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。
Schönhage-Strassen算法——在数学中,Schönhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(Nlog(N)log(log(N))),该算法使用了傅里叶变换。
单纯型算法(SimplexAlgorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。
奇异值分解(Singularvaluedecomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdeterminedlinearsystems)、矩阵逼近、数值天气预报等等。
求解线性方程组()——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordanelimination),或是柯列斯基分解(Choleskydecomposition)。
Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域(homogenousregion),看看它是否属于边缘,还是是一个顶点。
合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:
查找:判断某特定元素属于哪个组。
合并:联合或合并两个组为一个组。
维特比算法(Viterbialgorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。
Ⅲ 程序员都应该精通的六种算法,你会了吗
对于一名优秀的程序员来说,面对一个项目的需求的时候,一定会在脑海里浮现出最适合解决这个问题的方法是什么,选对了算法,就会起到事半功倍的效果,反之,则可能会使程序运行效率低下,还容易出bug。因此,熟悉掌握常用的算法,是对于一个优秀程序员最基本的要求。
那么,常用的算法都有哪些呢?一般来讲,在我们日常工作中涉及到的算法,通常分为以下几个类型:分治、贪心、迭代、枚举、回溯、动态规划。下面我们来一一介绍这几种算法。
一、分治算法
分治算法,顾名思义,是将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治算法一般分为三个部分:分解问题、解决问题、合并解。
分治算法适用于那些问题的规模缩小到一定程度就可以解决、并且各子问题之间相互独立,求出来的解可以合并为该问题的解的情况。
典型例子比如求解一个无序数组中的最大值,即可以采用分治算法,示例如下:
def pidAndConquer(arr,leftIndex,rightIndex):
if(rightIndex==leftIndex+1 || rightIndex==leftIndex){
return Math.max(arr[leftIndex],arr[rightIndex]);
}
int mid=(leftIndex+rightIndex)/2;
int leftMax=pidAndConquer(arr,leftIndex,mid);
int rightMax=pidAndConquer(arr,mid,rightIndex);
return Math.max(leftMax,rightMax);
二、贪心算法
贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法的基本思路是把问题分成若干个子问题,然后对每个子问题求解,得到子问题的局部最优解,最后再把子问题的最优解合并成原问题的一个解。这里要注意一点就是贪心算法得到的不一定是全局最优解。这一缺陷导致了贪心算法的适用范围较少,更大的用途在于平衡算法效率和最终结果应用,类似于:反正就走这么多步,肯定给你一个值,至于是不是最优的,那我就管不了了。就好像去菜市场买几样菜,可以经过反复比价之后再买,或者是看到有卖的不管三七二十一先买了,总之最终结果是菜能买回来,但搞不好多花了几块钱。
典型例子比如部分背包问题:有n个物体,第i个物体的重量为Wi,价值为Vi,在总重量不超过C的情况下让总价值尽量高。每一个物体可以只取走一部分,价值和重量按比例计算。
贪心策略就是,每次都先拿性价比高的,判断不超过C。
三、迭代算法
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程。迭代算法是用计算机解决问题的一种基本方法,它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。最终得到问题的结果。
迭代算法适用于那些每步输入参数变量一定,前值可以作为下一步输入参数的问题。
典型例子比如说,用迭代算法计算斐波那契数列。
四、枚举算法
枚举算法是我们在日常中使用到的最多的一个算法,它的核心思想就是:枚举所有的可能。枚举法的本质就是从所有候选答案中去搜索正确地解。
枚举算法适用于候选答案数量一定的情况。
典型例子包括鸡钱问题,有公鸡5,母鸡3,三小鸡1,求m钱n鸡的所有可能解。可以采用一个三重循环将所有情况枚举出来。代码如下:
五、回溯算法
回溯算法是一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
典型例子是8皇后算法。在8 8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问一共有多少种摆法。
回溯法是求解皇后问题最经典的方法。算法的思想在于如果一个皇后选定了位置,那么下一个皇后的位置便被限制住了,下一个皇后需要一直找直到找到安全位置,如果没有找到,那么便要回溯到上一个皇后,那么上一个皇后的位置就要改变,这样一直递归直到所有的情况都被举出。
六、动态规划算法
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
动态规划算法适用于当某阶段状态给定以后,在这阶段以后的过程的发展不受这段以前各段状态的影响,即无后效性的问题。
典型例子比如说背包问题,给定背包容量及物品重量和价值,要求背包装的物品价值最大。
Ⅳ 六种程序员实用算法推荐~
程序员实用算法
算法一: 快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要O(nlog n)次比较。在最坏状况下则需要O(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他O(n log n) 算法更快,因为它的内部循环 (inner loop)可以在大部分的架构上很有效率地被实现出来。快速排序使用分治法策略来把一个串行(list)分为两个子串行(sub-lists)。
算法二: 堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为O(nlogn)。
算法三: 归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide andConquer)的一个非常典型的应用。
算法四: 二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束:如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为O(logn)。
算法五: BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算 法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。
算法六: BFS(广度优先搜索)
广度优先搜索算法(Breadth-FirstSearch),是一种图形搜索算法。简单的说BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。
Ⅳ 大学里程序员必须掌握的核心算法
程序员必须掌握的核心算法
十大排序算法
简单排序插入排序、
选择排序、冒泡排序(必学)
分治排序:快速排序、归并排序(必学,快速排序还要关注中轴的选取方式)
分配排序桶排序、基数排序
树状排序:堆排序(必学)
其他:计数排序(必学)、希尔排序
图论算法
图的表示:邻接矩阵和邻接表
遍历算法:深度搜索和广度搜索(必学)
最短路径算法:FLOYD,DIJKSTRA(必学)
最小生成树算法:PRIM,KRUSKAL(必学)
实际算法:关键路径、拓抖排序(原理与应用)
二分图匹配:配对、匈牙利算法(原理与应用)
拓展:中心性算法、社区发现算法(原理与应用)
搜索与回溯算法
贪心算法(必学)
信发式搜索算法:A*寻路算法(了解)
地图着色算法、N皇后问题、最优加工顺序旅行商问题
动态规划
树形DP:01背包问题
线性DP:最长公共千序列、最长公共子串
区间DP:矩阵最大值(和以及积)
数位DP:数字游戏
状态压缩DP:旅行商
字符匹配算法
正则表达式
模式匹配:KMP、BOYER-MOORE
流相关算法
最大流:最短增广路、DINIC算法
最大流最小割:最大收盆问题、方格取数问题
最小费用最大流:最小费用路、消遣
Ⅵ 程序员必须掌握的核心算法
程序员掌握核心算法,还不收录
1、十大排序算法
(1)简单排序:插入排序、选择排序、冒泡排序(必学)。
(2)分治排序:快速排序、归并排序(必学,快速排序还要关注中轴的选取方式)。
(3)分配排序:桶排序、基数排序。
(4)树状排序:堆排序(必学)。
(5)其他:计数排序(必学)、希尔排序。
对干十大算法的学习,假如你不大懂的话,那么推荐你去看书,因为看了书,你可能不仅仅知道这个算法怎么写,还能知道他是怎么来的。推荐书籍是《算法第四版》,这本书讲的很详细,而且配了很多图演示,还是挺好懂的。
2、搜索与回溯算法
(1)贪心算法(必学);
(2)启发式搜索算法:A*寻路算法(了解);
(3)地图着色算法、N 皇后问题、最优加工顺序;
(4)旅行商问题。
这方便的只是都是一些算法相关的,像贪心算法的思想,就必须学的了。建议通过刷题来学习,leetcode 直接专题刷。
3、动态规划
(1)树形DP:01背包问题;
(2)线性DP:最长公共子序列、最长公共子串;
(3)区间DP:矩阵最大值(和以及积);
(4)数位DP:数字游戏;
(5)状态压缩DP:旅行商。
这里建议先了解动态规划是什么,之后 leetcode专题刷,反正就一般上面这几种题型。
4、字符匹配算法
(1)正则表达式;
(2)模式匹配:KMP、Boyer-Moore。
5、流相关算法
(1)最大流:最短增广路、Dinic 算法。
(2)最大流最小割:最大收益问题、方格取数问题。
(3)最小费用最大流:最小费用路、消遣。