导航:首页 > 源码编译 > 人工神经网络遗传算法

人工神经网络遗传算法

发布时间:2022-04-17 11:30:31

‘壹’ 细思恐极丨 这尼玛是“人工智能“还是”人工智障“

人工智能在现阶段发展还不是很完美。
人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。
这种方法叫工程学方法(ENGINEERING APPROACH),它已在一些领域内作出了成果,如文字识别、电脑下棋等。
另一种是模拟法(MODELING APPROACH),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。遗传算法(GENERIC ALGORITHM,简称GA)和人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。

‘贰’ 人工神经网络算法研究及应用的目录

第1章 绪论
1.1 神经网络在石油生产中的应用简介
1.2 神经网络的研究与发展历史
1.3 储层预测的研究与进展
1.4 神经网络模式识别概述
1.5 遗传算法研究与发展概述
1.6 模拟退火算法的研究和发展概况
1.7 支持向量机的研究与进展
1.8 本书的主要研究内容及章节安排
第2章 人工神经网络
2.1 引言
2.2 神经元模型
2.3 神经网络模型
2.4 感知器
2.5 误差回传神经网络(BP)
2.6 神经网络的优点
2.7 本章小结
第3章 改进遗传算法的径向基函数网络方法研究及应用
3.1 引言
3.2 径向基函数网络
3.3 遗传算法
3.4 自适应遗传算法(AGA)基本原理
3.5 基于改进遗传算法的径向基函数网络
3.6 改进的遗传算法径向基函数网络的应用
3.7 本章小结
第4章 小波变换及小波神经网络方法研究及应用
4.1 引言
4.2 小波分析
4.3 小波变换模极大检测地震反射界面
4.4 小波神经网络
4.5 小波神经网络的应用一
4.6 本章小结
第5章 模糊神经网络方法研究及应用
5.1 引言
5.2 模糊理论
5.3 模糊关系和模糊逻辑推理
5.4 模糊逻辑系统
5.5 模糊系统和神经网络的融合
5.6 模糊神经网络
5.7 用于火山岩储层识别预测的模糊神经网络
5.8 基于模糊神经网络的火山岩储层的识别与预测
5.9 基于模糊神经网络多传感器数据融合的海底输油管道腐蚀检测系统
5.1 0本章小结
第6章 改进的模拟退火人工神经网络方法研究及应用
6.1 引言
6.2 模拟退火算法及其特性
6.3 模拟退火算法的渐近收敛性
6.4 模拟退火算法与局部搜索算法比较
6.5 鲍威尔(P0well)算法
6.6 改进的模拟退火人工神经网络
6.7 改进的模拟退火人工神经网络应用
6.8 算法比较
6.9 本章小结
第7章 支持向量机方法研究及应用
7.1 引言
7.2 机器学习的基本问题和方法
7.3 统计学习理论的主要内容
7.4 分类支持向量机
7.5 回归支持向量机
7.6 支持向量机的应用
7.7 本章小结
第8章 结论
参考文献

‘叁’ 神经网络和遗传算法有什么关系

遗传算法是一种智能优化算法,神经网络是人工智能算法的一种。
可以将遗传算法用于神经网络的参数优化中。

‘肆’ 如何利用人工神经网络或遗传算法解决实际问题

来自<神经网络之家>nnetinfo

目前可以做的一般有:

  1. 分类.

  2. 函数拟合

  3. 压缩.

  4. 图象识别

等等, 其实说到底,所有的都能归于第2点--函数拟合.

一般如果输入与输出是有强烈关系的,网络都能找得到这个关系.例如病人的特征作为输入,判断这个是否为病人,一般都是可以的.业务背景知识强,才能把神经网络运用到实际中.

另外,还需要把实现问题转换为数学问题的能力.

例如数字识别就是一个经典的应用.但直接把图片放进去训练是得不到识别效果的,因为维度太多了,而且信息冗余量很大.

于是有人把图片的特征先自已提取出来:例如对角线与图片上的数字有几个交点等等,再把这些特征作为输入,数字类别向量作为输出,放到网络中训练.最后你再写一个数字,提取这个数字的特征,再把这特征放进网络中的时候,它就能识别到你是哪个数字了.

另外,又有人用卷积神经网络去做数字识别.

还有人用深度网络去做,即先把原来图片的信息用RBM网络进行压缩,然后再训练,效果就好了.

等等,其实很多问题都可以做,但前提是你要想到好的方式去运用神经网络.

‘伍’ 什么是蚁群算法,神经网络算法,遗传算法

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

‘陆’ BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系

这四个都属于人工智能算法的范畴。其中BP算法、BP神经网络和神经网络
属于神经网络这个大类。遗传算法为进化算法这个大类。
神经网络模拟人类大脑神经计算过程,可以实现高度非线性的预测和计算,主要用于非线性拟合,识别,特点是需要“训练”,给一些输入,告诉他正确的输出。若干次后,再给新的输入,神经网络就能正确的预测对于的输出。神经网络广泛的运用在模式识别,故障诊断中。BP算法和BP神经网络是神经网络的改进版,修正了一些神经网络的缺点。
遗传算法属于进化算法,模拟大自然生物进化的过程:优胜略汰。个体不断进化,只有高质量的个体(目标函数最小(大))才能进入下一代的繁殖。如此往复,最终找到全局最优值。遗传算法能够很好的解决常规优化算法无法解决的高度非线性优化问题,广泛应用在各行各业中。差分进化,蚁群算法,粒子群算法等都属于进化算法,只是模拟的生物群体对象不一样而已。

‘柒’ 人工神经网络和遗传算法的异同

神经网络是根据实际输出和期望输出的差值来调整权重,最终使输出接近期望输出。

遗传算法是根据假设不停地进化,最终使假设变成真实值。
他们都是可以达到最终的决策目的。

‘捌’ 神经网络优缺点,

优点:

(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。

自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。

(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

(3)具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

缺点:

(1)最严重的问题是没能力来解释自己的推理过程和推理依据。

(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。

(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。

(4)理论和学习算法还有待于进一步完善和提高。

(8)人工神经网络遗传算法扩展阅读:

神经网络发展趋势

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。

参考资料:网络-人工神经网络

‘玖’ 关于神经网络,蚁群算法和遗传算法

  1. 神经网络并行性和自适应性很强,应用领域很广,在任何非线性问题中都可以应用,如控制、信息、预测等各领域都能应用。

  2. 蚁群算法最开始应用于TSP问题,获得了成功,后来又广泛应用于各类组合优化问题。但是该算法理论基础较薄弱,算法收敛性都没有得到证明,很多参数的设定也仅靠经验,实际效果也一般,使用中也常常早熟。

  3. 遗传算法是比较成熟的算法,它的全局寻优能力很强,能够很快地趋近较优解。主要应用于解决组合优化的NP问题。

  4. 这三种算法可以相互融合,例如GA可以优化神经网络初始权值,防止神经网络训练陷入局部极小且加快收敛速度。蚁群算法也可用于训练神经网络,但一定要使用优化后的蚁群算法,如最大-最小蚁群算法和带精英策略。

阅读全文

与人工神经网络遗传算法相关的资料

热点内容
cs社区服务器怎么改中文 浏览:23
360手机取消加密 浏览:962
python矩阵横向求和 浏览:635
台湾服务器主板厂商有哪些云主机 浏览:81
php代码部署到云服务器 浏览:724
本地服务器怎么打个人网站 浏览:131
用姓做个特效用哪个app 浏览:782
安卓faceme酷脸怎么打开 浏览:290
python矩阵的运算符 浏览:800
程序员进公司干什么 浏览:973
socket发数据java 浏览:566
上传图片服务器开小差是什么意思 浏览:785
pdf文件怎么转换为ppt文件 浏览:858
web前端开发与java 浏览:737
安卓如何卸载软件 浏览:500
linux如何查看服务器型号 浏览:282
php新建一个对象 浏览:683
滴滴加密录像投诉 浏览:980
word兼容pdf 浏览:643
阿里云轻量应用服务器怎么买 浏览:571