导航:首页 > 源码编译 > 遗传算法中如何实现最大最小

遗传算法中如何实现最大最小

发布时间:2025-03-29 14:20:25

⑴ 遗传算法的基本原理

遗传算法的基本原理和方法

一、编码

编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。

解码(译码):遗传算法解空间向问题空间的转换。

二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。

格雷码(Gray Code):在相邻整数之间汉明距离都为1。

(较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。

二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。

动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。

编码方法:

1、 二进制编码方法

缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则

2、 格雷码编码滚如:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。

3、 浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。

4、 各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。

5、 多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。

评估编码的三个规范:完备性、健全性、非冗余性。

二、选择

遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。

常用的选择算子:

1、 轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

2、 随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。

3、 最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的大宏启个体结构完整地复制到下一代群体中。

4、 无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下

(1) 计算群体中每个个体在下一代群体中的生存期望数目N。

(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去0.5,若某一个体未被选中参与交叉运算,则它绝配在下一代中的生存期望数目减去1.0。

(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。

5、 确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:

(1) 计算群体中各个个体在下一代群体中的期望生存数目N。

(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。

(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。

6、无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群体中,因而选择误差比较小。

7、均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。

8、最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

9、随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。

10、排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。

三、交叉

遗传算法的交叉操作,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。

适用于二进制编码个体或浮点数编码个体的交叉算子:

1、单点交叉(One-pointCrossover):指在个体编码串中只随机设置一个交叉点,然后再该点相互交换两个配对个体的部分染色体。

2、两点交叉与多点交叉:

(1) 两点交叉(Two-pointCrossover):在个体编码串中随机设置了两个交叉点,然后再进行部分基因交换。

(2) 多点交叉(Multi-pointCrossover)

3、均匀交叉(也称一致交叉,UniformCrossover):两个配对个体的每个基因座上的基因都以相同的交叉概率进行交换,从而形成两个新个体。

4、算术交叉(ArithmeticCrossover):由两个个体的线性组合而产生出两个新的个体。该操作对象一般是由浮点数编码表示的个体。

四、变异

遗传算法中的变异运算,是指将个体染色体编码串中的某些基因座上的基因值用该基因座上的其它等位基因来替换,从而形成以给新的个体。

以下变异算子适用于二进制编码和浮点数编码的个体:

1、基本位变异(SimpleMutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。

2、均匀变异(UniformMutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)

3、边界变异(BoundaryMutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。

4、非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。

5、高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P2的正态分布的一个随机数来替换原有的基因值。

⑵ matlab遗传算法求函数最小值问题!

如果你的函数是求maxf(x)的问题,要编程求最小值问题,那么你需要对这个函数取负值求最小值即可
举例来说:
求max(z)=ax+bx^2
等同于
求min(z)=-(ax+bx^2)
-----------------------------------------
我这里有一个使用matlab遗传算法工具箱的案例,你可以用来快速求解,如果你想自己编程实现遗传算法,可以加我QQ:34508855
核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0] 注意】matlab工具箱函数必须放在工作目录下 【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】 %编写目标函数 function[sol,eval]=fitness(sol,options) x=sol(1); eval=x+10*sin(5*x)+7*cos(4*x); %把上述函数存储为fitness.m文件并放在工作目录下 initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10 [x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',... [0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代 运算借过为:x = 7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2 【问题】在-5<=Xi<=5,i=1,2区间内,求解 f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】 %源函数的matlab代码 function [eval]=f(sol) numv=size(sol,2); x=sol(1:numv); eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282; %适应度函数的matlab代码 function [sol,eval]=fitness(sol,options) numv=size(sol,2)-1; x=sol(1:numv); eval=f(x); eval=-eval; %遗传算法的matlab代码 bounds=ones(2,1)*[-5 5]; [p,endPop,bestSols,trace]=ga(bounds,'fitness') 注:前两个文件存储为m文件并放在工作目录下,运行结果为 p = 0.0000 -0.0000 0.0055

⑶ 什么是遗传算法

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。
对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:
遗传算法式中x为决策
变量,式2-1为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。
遗传算法的基本运算过程如下:
a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

⑷ 求一个关于人工智能的小实验

人工智能第二次实验报告

1.实验题目:

遗传算法的设计与实现

2.实验目的:

通过人工智能课程的学习,熟悉遗传算法的简单应用。

3.实验内容

用遗传算法求解f (x) = x2 的最大值,x∈ [0,31],x取整数。

可以看出该函数比较简单,只要是为了体现遗传算法的思想,在问题选择上,选了一个比较容易实现的,把主要精力放在遗传算法的实现,以及核心思想体会上。

4. 实验过程:

1. 实现过程

(1)编码
使用二进制编码,随机产生一个初始种群。L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。针对该问题进行了简化,因为题设中x∈ [0,31],所以将二进制长度定为5就够用了;

(2)生成初始群体
种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20—100。
(3)适应度检测
根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数;

(4)选择
从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比;

(5)交叉
遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉概率通常应取较大值;但若过大的话,又可能破坏群体的优良模式。一般取0.4到0.99。

(6)变异
随机选择中间群体中的某个个体,以变异概率大小改变个体某位基因的值。变异为产生新个体提供了机会。变异概率也是影响新个体产生的一个因素,变异概率小,产生新个体少;变异概率太大,又会使遗传算法变成随机搜索。一般取变异概率为0.0001—0.1。

(7)结束条件
当得到的解大于等于900时,结束。从而观看遗传的效率问题

⑸ 遗传算法

参考文献: 知乎    遗传算法     编码解码知识

实现遗传算法的第一步就是明确对求解问题的编码和解码方式。对于函数优化问题,一般有两种编码方式,各具优缺点

实数编码:直接用实数表示基因,容易理解且不需要解码过程,但容易过早收敛,从而陷入局部最优

二进制编码:稳定性高,种群多样性大,但需要的存储空间大,需要解码且难以理解

对于求解函数最大值问题,我选择的是二进制编码。

以我们的目标函数 f(x) = x + 10sin(5x) + 7cos(4x), x∈[0,9] 为例。

假如设定求解的精度为小数点后4位,可以将x的解空间划分为 (9-0)×(1e+4)=90000个等分。

2^16<90000<2^17,需要17位二进制数来表示这些解。换句话说,一个解的编码就是一个17位的二进制串。

一开始,这些二进制串是随机生成的。

一个这样的二进制串代表一条染色体串,这里染色体串的长度为17。

对于任何一条这样的染色体chromosome,如何将它复原(解码)到[0,9]这个区间中的数值呢?

对于本问题,我们可以采用以下公式来解码:

decimal( ): 将二进制数转化为十进制数

一般化解码公式:

lower_bound: 函数定义域的下限

upper_bound: 函数定义域的上限

chromosome_size: 染色体的长度

通过上述公式,我们就可以成功地将二进制染色体串解码成[0,9]区间中的十进制实数解。

染色体,就是指由 DNA 组成的聚合体,DNA 上的每个基因都编码了一个独特的性状,比如,头发或者眼睛的颜色

可以将他看作是一个优化问题,它可以尝试找出某些输入,凭借这些输入我们便可以得到最佳的输出值或者是结果

遗传算法要点:

1.初始化

初始化候选全体,随机初始化

2.查找适应函数

3.选择:物竞天择,适者生存

先选择能量强的个体,然后再进行随机选择,选出适应度虽然小,但是幸存下来的个体

4.交叉:

5.变异:根据需要进行选择

阅读全文

与遗传算法中如何实现最大最小相关的资料

热点内容
海马压缩机多少钱一个 浏览:120
地铁逃生安卓怎么找回账号 浏览:898
松下扫地机怎么连app 浏览:446
怎么连接阿里云服务器windows系统 浏览:979
java7linux 浏览:940
怎么加密公司文件 浏览:24
华为程序员岗位招聘信息 浏览:5
手机发票保存哪个文件夹 浏览:658
源码定制网站源码 浏览:551
程序员素养的书 浏览:183
zk解压旧版本 浏览:720
linux关机按钮 浏览:936
程序员成长能力 浏览:573
云主机快还是服务器快 浏览:800
公积金app怎么申请公积金 浏览:467
电机的额定电流算法 浏览:41
君威怎么连手机app 浏览:630
证书被加密 浏览:655
下大封城命令 浏览:494
哪个APP可以看欧洲篮球 浏览:421