导航:首页 > 源码编译 > 回朔算法01背包cw

回朔算法01背包cw

发布时间:2025-03-30 16:56:52

㈠ 大学里程序员必须掌握的核心算法

程序员必须掌握的核心算法

十大排序算法

简单排序插入排序、

选择排序、冒泡排序(必学)

分治排序:快速排序、归并排序(必学,快速排序还要关注中轴的选取方式)

分配排序桶排序、基数排序

树状排序:堆排序(必学)

其他:计数排序(必学)、希尔排序

图论算法

图的表示:邻接矩阵和邻接表

遍历算法:深度搜索和广度搜索(必学)

最短路径算法:FLOYD,DIJKSTRA(必学)

最小生成树算法:PRIM,KRUSKAL(必学)

实际算法:关键路径、拓抖排序(原理与应用)

二分图匹配:配对、匈牙利算法(原理与应用)

拓展:中心性算法、社区发现算法(原理与应用)

搜索与回溯算法

贪心算法(必学)

信发式搜索算法:A*寻路算法(了解)

地图着色算法、N皇后问题、最优加工顺序旅行商问题

动态规划

树形DP:01背包问题

线性DP:最长公共千序列、最长公共子串

区间DP:矩阵最大值(和以及积)

数位DP:数字游戏

状态压缩DP:旅行商

字符匹配算法

正则表达式

模式匹配:KMP、BOYER-MOORE

流相关算法

最大流:最短增广路、DINIC算法

最大流最小割:最大收盆问题、方格取数问题

最小费用最大流:最小费用路、消遣

㈡ 程序员必须掌握的核心算法

程序员掌握核心算法,还不收录

1、十大排序算法

(1)简单排序:插入排序、选择排序、冒泡排序(必学)。

(2)分治排序:快速排序、归并排序(必学,快速排序还要关注中轴的选取方式)。

(3)分配排序:桶排序、基数排序。

(4)树状排序:堆排序(必学)。

(5)其他:计数排序(必学)、希尔排序。

对干十大算法的学习,假如你不大懂的话,那么推荐你去看书,因为看了书,你可能不仅仅知道这个算法怎么写,还能知道他是怎么来的。推荐书籍是《算法第四版》,这本书讲的很详细,而且配了很多图演示,还是挺好懂的。

2、搜索与回溯算法

(1)贪心算法(必学);

(2)启发式搜索算法:A*寻路算法(了解);

(3)地图着色算法、N 皇后问题、最优加工顺序;

(4)旅行商问题。

这方便的只是都是一些算法相关的,像贪心算法的思想,就必须学的了。建议通过刷题来学习,leetcode 直接专题刷。

3、动态规划

(1)树形DP:01背包问题;

(2)线性DP:最长公共子序列、最长公共子串;

(3)区间DP:矩阵最大值(和以及积);

(4)数位DP:数字游戏;

(5)状态压缩DP:旅行商。

这里建议先了解动态规划是什么,之后 leetcode专题刷,反正就一般上面这几种题型。

4、字符匹配算法

(1)正则表达式;

(2)模式匹配:KMP、Boyer-Moore。

5、流相关算法

(1)最大流:最短增广路、Dinic 算法。

(2)最大流最小割:最大收益问题、方格取数问题。

(3)最小费用最大流:最小费用路、消遣。

㈢ 关于NOIP

NOIP级别中,普及组和提高组的要求不同。
但是这几类动规的题目掌握了,基本也就可以了:
1、背包问题:01背包、完全背包、需要构造的多维01背包
详见背包九讲
2、最大降序:例如打导弹
3、矩阵相乘:例如能量珠子
4、买股票
5、方格取数:单向的、双向的
6、三角取数
这些都是简单的动规的应用,必须掌握,背也要背出来,还要会套用。

至于排序,本人认为基本的选择排序大家都会,快速排序是一定要会的,当数据规模<500时用选择排序,当数据规模在500和100000之间是用快速排序,但是NOIP中经常考到基数排序,例如划分数线等,数据规模会达到1000000,用其他的排序法可能会超时一两个测试点。

至于搜索,那是必须掌握的深搜、广搜都要会,主要是深搜,当提高组碰到一下子想不出动规的状态转移方程式,深搜穷举也是可行的,一般都能拿到不少的分数。个人之间广搜的用处不大,程序复杂而且爆机率很高。当然n个for的穷举法在不得已的时候也能得不少分,只要if剪枝的好,对付八后问题等问题时,时间效率比很高。

另外就是图的遍历,有关图的最小生成树、图的单源最短路径,也是需要很好地掌握,一直会考。当然,深搜的本事高的人可以用深搜搞定。

总结如下:要得一等,必须对模拟法和穷举法有深刻的体会,并知道很多变通的手段;对快排要背的滚瓜烂熟;对深搜要做到不管是贪心还是动规的题,都能用深搜实现,只不过少量点超时而已;动规要记住六大模型,然后背包要理解透彻;数学很重要,数学分析的题要做对,例如排组合、凸包、计算几何近几年常考。有了这些,一等可以稳拿。

㈣ 大学生想成为优秀程序员,务必掌握核心算法

程序员必须掌握的核心算法

十大排序算法

简单排序

插入排序、选择排序、冒泡排序(必学)

分治排序:快速排序、归并排序

(必学,快速排序还要关注中轴的选取方式

分配排序:桶排序、基数排序

树状排序:堆排序(必学)

其他:

计数排序(必学)、希尔排序

图论算法

图的表示:邻接矩阵和邻接表

遍历算法:深度搜素和广度搜索(必学

最短路径算法:FLOYD,DIJKSTRA(必学

最小生成树算法:PRIM,KRUSKAL(必学

实际常用算法:关键路径、拓抖排序原理与应用)

分图匹配:配对、匈牙利算法

(原理与应用)

拓展:中心性算法、社区发现算法原理与应用)

搜索与回溯算法

贪心算法(必学)

信发式搜索算法:A*寻路算法(了解)地图着色算法、

N皇后问题最优加工顺序旅行商问题

动态规划

树形DP:01背包问题线性DP.取y区间DP·矩阵最

大值(和以及积)数位DP:数字游戏状态压缩DP·旅行商

字符匹配算法

正则表达式

模式匹配:KMP、BOYER-MOORE

流相关算法

最大流:最短增广路、DINIC算法最大流最小割:

最大收盆问题、方格取数问题最小费用最大流:最小费用路、消遣

㈤ 200分求动态规划详解!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

嗯···我学动归不是很久,同样是迷惘过,估计两个月前刚刚开窍……
你看他写的什么无后效性什么最优子结构的就头大,我也头大%…………
动态规划一般解决两类问题,一类是最优化问题,就是问你最大价值最小数什么的,另一类是方案总数问题。

细分的话类型很多,
我见得多的(我是高二学生,目前在筹备NOIP)
(你那题多我就只说名字了)
背包,楼上连9讲都放上来了我就不多说了……
最长不上升不下降子序列问题(比如说潘帕斯雄鹰生日模拟赛的飞翔,就是很经典的不下降的变形)
资源分配问题(比如说橱窗布置,马棚问题,机器分配问题)
区间动归(乘积最大,能量项链等等)
最长公共子序列问题(有个遗传编码好像);
解决方案树的比如说爬楼梯问题……………………

动态规划的类型很多很多,因为他很灵活的,我们老师曾经给我们找了100个DP方程,但是那都没有用,强记根本记不住,关键是理解。

深入一点的就有DP的优化,时间空间的降维(就是用别的方法去做,或者比如说背包本来是二维的空间优化过该成一维的了),树形DP(这个我也不会)。
(优化里面有个很经典的题《过河》)

我对DP是属于那种突然就开了窍的……别看说“动态规划”什么的唬人,其实就是一个比较一个计算,知道他干什么了题上来就有头绪,方程啊思想啊就有了……

主要也是多看题吧,从简单的开始,理解他的思想……自己写动归的时候注意下面几个问题:
1、大前提是确定你做的是动归题……看得多了也就知道自己面对的是什么类型的题了
2、次前提是想法要对(我做题的时候先想这道题时间空间的维度,然后根据这个去想方程),方程正确,
实在想不起来可以先看题解,去理解人家的思想之后,不要看标程把程序做出来……
3、注意数组不要开的过小,一般都是左右都开大一点,比如他的数据范围是1~100 ,数组就开0~101.这个是防越界的,因为很多DP赋初值的时候会用到F[0],F[0,0]
4、初始值要正确,因为很多DP其他地方都是正确的因为初始值赋错了而全部过不了的情况是很常见的……(比如说USACO里面的货币系统)
5、DP循环的范围要正确,一般根据题来判断范围写多少的(比如说橱窗问题,今天下午写这个题因为循环写错了一直AC不了)

USACO里也有很多DP题,可以做……
以上全部手打,希望能对你有所帮助。
我也是正在学习的人,上面的东西不一定全部正确,但是对我而言很受用,也算是我的经验了。希望日后能一起学习交流外加进步喽
QQ:340131980
1. 资源问题1
-----机器分配问题
F[I,j]:=max(f[i-1,k]+w[i,j-k])

2. 资源问题2
------01背包问题
F[I,j]:=max(f[i-1,j-v]+w,f[i-1,j]);

3. 线性动态规划1
-----朴素最长非降子序列
F:=max{f[j]+1}

4. 剖分问题1
-----石子合并
F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);

5. 剖分问题2
-----多边形剖分
F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a);

6. 剖分问题3
------乘积最大
f[i,j]:=max(f[k,j-1]*mult[k,i]);

7. 资源问题3
-----系统可靠性(完全背包)
F[i,j]:=max{f[i-1,j-c*k]*P[I,x]}

8. 贪心的动态规划1
-----快餐问题
F[i,j,k]:=max{f[i-1,j',k']+(T-(j-j')*p1-(k-k')*p2) div p3}

9. 贪心的动态规划2
-----过河 f=min{{f(i-k)} (not stone)
{f(i-k)}+1} (stone); +贪心压缩状态

10. 剖分问题4
-----多边形-讨论的动态规划
F[i,j]:=max{正正 f[I,k]*f[k+1,j];
负负 g[I,k]*f[k+1,j];
正负 g[I,k]*f[k+1,j];
负正 f[I,k]*g[k+1,j];} g为min

11. 树型动态规划1
-----加分二叉树 (从两侧到根结点模型)
F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}

12. 树型动态规划2
-----选课 (多叉树转二叉树,自顶向下模型)
F[I,j]表示以i为根节点选j门功课得到的最大学分
f[i,j]:=max{f[t.l,k]+f[t.r,j-k-1]+c}

13. 计数问题1
-----砝码称重
f[f[0]+1]=f[j]+k*w[j];
(1<=i<=n; 1<=j<=f[0]; 1<=k<=a;)

14. 递推天地1
------核电站问题
f[-1]:=1; f[0]:=1;
f:=2*f[i-1]-f[i-1-m]

15. 递推天地2
------数的划分
f[i,j]:=f[i-j,j]+f[i-1,j-1];

16. 最大子矩阵1
-----一最大01子矩阵
f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;
ans:=maxvalue(f);

17. 判定性问题1
-----能否被4整除
g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false;
g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)

18. 判定性问题2
-----能否被k整除
f[I,j±n mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n

20. 线型动态规划2
-----方块消除游戏
f[i,i-1,0]:=0
f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),
f[i,p,k+len[j]]+f[p+1,j-1,0]}
ans:=f[1,m,0]

21. 线型动态规划3
-----最长公共子串,LCS问题
f[i,j]={0(i=0)&(j=0);
f[i-1,j-1]+1 (i>0,j>0,x=y[j]);
max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x<>y[j]);

22. 最大子矩阵2
-----最大带权01子矩阵O(n^2*m)
枚举行的起始,压缩进数列,求最大字段和,遇0则清零

23. 资源问题4
-----装箱问题(判定性01背包)
f[j]:=(f[j] or f[j-v]);

24. 数字三角形1
-----朴素の数字三角形
f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);

25. 数字三角形2
-----晴天小猪历险记之Hill
同一阶段上暴力动态规划
if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]

26. 双向动态规划1
数字三角形3
-----小胖办证
f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])

27. 数字三角形4
-----过河卒
//边界初始化
f[i,j]:=f[i-1,j]+f[i,j-1];

28. 数字三角形5
-----朴素的打砖块
f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);

29. 数字三角形6
-----优化的打砖块
f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}

30. 线性动态规划3
-----打鼹鼠’
f:=f[j]+1;(abs(x-x[j])+abs(y-y[j])<=t-t[j])

31. 树形动态规划3
-----贪吃的九头龙

32. 状态压缩动态规划1
-----炮兵阵地
Max(f[Q*(r+1)+k],g[j]+num[k])
If (map and plan[k]=0) and
((plan[P] or plan[q]) and plan[k]=0)

33. 递推天地3
-----情书抄写员
f:=f[i-1]+k*f[i-2]

34. 递推天地4
-----错位排列
f:=(i-1)(f[i-2]+f[i-1]);
f[n]:=n*f[n-1]+(-1)^(n-2);

35. 递推天地5
-----直线分平面最大区域数
f[n]:=f[n-1]+n
:=n*(n+1) div 2 + 1;

36. 递推天地6
-----折线分平面最大区域数
f[n]:=(n-1)(2*n-1)+2*n;

37. 递推天地7
-----封闭曲线分平面最大区域数
f[n]:=f[n-1]+2*(n-1)
:=sqr(n)-n+2;
38 递推天地8
-----凸多边形分三角形方法数
f[n]:=C(2*n-2,n-1) div n;
对于k边形
f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)

39 递推天地9
-----Catalan数列一般形式
1,1,2,5,14,42,132
f[n]:=C(2k,k) div (k+1);

40 递推天地10
-----彩灯布置
排列组合中的环形染色问题
f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);

41 线性动态规划4
-----找数
线性扫描
sum:=f+g[j];
(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)

42 线性动态规划5
-----隐形的翅膀
min:=min{abs(w/w[j]-gold)};
if w/w[j]<gold then inc(i) else inc(j);

43 剖分问题5
-----最大奖励
f:=max(f,f[j]+(sum[j]-sum)*i-t

44 最短路1
-----Floyd
f[i,j]:=max(f[i,j],f[i,k]+f[k,j]);
ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];
45 剖分问题6
-----小H的小屋
F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);

46 计数问题2
-----陨石的秘密(排列组合中的计数问题)
Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];
F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);

47 线性动态规划
------合唱队形
两次F:=max{f[j]+1}+枚举中央结点

48 资源问题
------明明的预算方案:加花的动态规划
f[i,j]:=max(f[i,j],f[l,j-v-v[fb]-v[fa]]+v*p+v[fb]*p[fb]+v[fa]*p[fa]);

49 资源问题
-----化工场装箱员

50 树形动态规划
-----聚会的快乐
f[i,2]:=max(f[i,0],f[i,1]);
f[i,1]:=sigma(f[t^.son,0]);
f[i,0]:=sigma(f[t^.son,3]);

51 树形动态规划
-----皇宫看守
f[i,2]:=max(f[i,0],f[i,1]);
f[i,1]:=sigma(f[t^.son,0]);
f[i,0]:=sigma(f[t^.son,3]);

52 递推天地
-----盒子与球
f[i,1]:=1;
f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);

53 双重动态规划
-----有限的基因序列
f:=min{f[j]+1}
g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])

54 最大子矩阵问题
-----居住空间
f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),
min(f[i,j,k-1],f[i-1,j-1,k])),
min(min(f[i-1,j,k-1],f[i,j-1,k-1]),
f[i-1,j-1,k-1]))+1;
55 线性动态规划
------日程安排
f:=max{f[j]}+P[I]; (e[j]<s)

56 递推天地
------组合数
C[I,j]:=C[i-1,j]+C[I-1,j-1]
C[I,0]:=1

57 树形动态规划
-----有向树k中值问题
F[I,r,k]:=max{max{f[l,I,j]+f[r,I,k-j-1]},f[f[l,r,j]+f[r,r,k-j]+w[I,r]]}

58 树形动态规划
-----CTSC 2001选课
F[I,j]:=w(if i∈P)+f[l,k]+f[r,m-k](0≤k≤m)(if l<>0)

59 线性动态规划
-----多重历史
f[i,j]:=sigma{f[i-k,j-1]}(if checked)

60 背包问题(+-1背包问题+回溯)
-----CEOI1998 Substract
f[i,j]:=f[i-1,j-a] or f[i-1,j+a]

61 线性动态规划(字符串)
-----NOI 2000 古城之谜
f[i,1,1]:=min{f[i+length(s),2,1], f[i+length(s),1,1]+1}f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+words[s]}

62 线性动态规划
-----最少单词个数
f[i,j]:=max{f[I,j],f[u-1,j-1]+l}

63 线型动态规划
-----APIO2007 数据备份
状态压缩+剪掉每个阶段j前j*2个状态和j*2+200后的状态贪心动态规划
f:=min(g[i-2]+s,f[i-1]);
64 树形动态规划
-----APIO2007 风铃
f:=f[l]+f[r]+{1 (if c[l]<c[r])}
g:=1(d[l]<>d[r]) 0(d[l]=d[r])
g[l]=g[r]=1 then Halt;

65 地图动态规划
-----NOI 2005 adv19910
F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];

66 地图动态规划
-----优化的NOI 2005 adv19910
F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;

67 目标动态规划
-----CEOI98 subtra
F[I,j]:=f[I-1,j+a] or f[i-1,j-a]

68 目标动态规划
----- Vijos 1037搭建双塔问题
F[value,delta]:=g[value+a,delta+a] or g[value,delta-a]

69 树形动态规划
-----有线电视网
f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])
leaves>=p>=l, 1<=q<=p;

70 地图动态规划
-----vijos某题
F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);

71 最大子矩阵问题
-----最大字段和问题
f:=max(f[i-1]+b,b); f[1]:=b[1]

72 最大子矩阵问题
-----最大子立方体问题
枚举一组边i的起始,压缩进矩阵 B[I,j]+=a[x,I,j]
枚举另外一组边的其实,做最大子矩阵

73 括号序列
-----线型动态规划
f[I,j]:=min(f[I,j],f[i+1,j-1](ss[j]=”()”or(”[]”)),
f[I+1,j+1]+1 (s[j]=”(”or”[” ] , f[I,j-1]+1(s[j]=”)”or”]” )

74 棋盘切割
-----线型动态规划
f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],
f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]
min{}}

75 概率动态规划
-----聪聪和可可(NOI2005)
x:=p[p[i,j],j]
f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1
f[I,i]=0
f[x,j]=1

76 概率动态规划
-----血缘关系
F[A, B]=(f[A0, B]+P[A1, B])/2
f[I,i]=1
f[I,j]=0(I,j无相同基因)

77 线性动态规划
-----决斗
F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i<k<j

78 线性动态规划
-----舞蹈家
F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])

79 线性动态规划
-----积木游戏
F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k’],f[I,a+1,a+1,k’])

80 树形动态规划(双次记录)
-----NOI2003 逃学的小孩
朴素的话枚举节点i和离其最远的两个节点 j,k O(n^2)
每个节点记录最大的两个值,并记录这最大值分别是从哪个相邻节点传过来的。当遍历到某个孩子节点的时候,只需检查最大值是否是从该孩子节点传递来的。如果是,就取次大,否则取最大值

81 树形动态规划(完全二叉树)
-----NOI2006 网络收费
F[I,j,k]表示在点i所管辖的所有用户中,有j个用户为A,在I的每个祖先u上,如果N[a]>N则标0否则标1,用二进制状态压缩进k中,在这种情况下的最小花费
F[I,j,k]:=min{f[l,u,k and (s<<(i-1))]+w1,f[r,j-u,k and(s<<(i-1))]}

82 树形动态规划
-----IOI2005 河流
F:=max

83 记忆化搜索
-----Vijos某题,忘了
F[pre,h,m]:=sigma{SDP(I,h+1,M+i)} (pre<=i<=M+1)

84 状态压缩动态规划
-----APIO 2007 动物园
f[I,k]:=f[i-1,k and not (1<<4)] + NewAddVal

85 树形动态规划
-----访问术馆
f[i,j-c×2]:= max ( f[l,k], f[r,j-c×2-k] )

86 字符串动态规划
-----Ural 1002 Phone
if exist((s,j,i-j)) then f:=min(f,f[j]+1);

87 多进程动态规划
-----CEOI 2005 service
Min( f[i,j,k], f[i-1,j,k] + c[t[i-1],t] )
Min( f[i,t[i-1],k], f[i-1,j,k] + c[j,t] )
Min( f[i,j,t[i-1]], f[i-1,j,k] + c[k,t] )

88 多进程动态规划
-----Vijos1143 三取方格数
max(f[i,j,k,l],f[i-1,j-R[m,1],k-R[m,2],l-R[m,3]]);
if (j=k) and (k=l) then inc(f[i,j,k,l],a[j,i-j]) else
if (j=k) then inc(f[i,j,k,l],a[j,i-j]+a[l,i-l]) else
if (k=l) then inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]) else
if (j=l) then inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]) else
inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]+a[l,i-l]);

89 线型动态规划
-----IOI 2000 邮局问题
f[i,j]:=min(f[I,j],f[k,j-1]+d[k+1,i]);

90 线型动态规划
-----Vijos 1198 最佳课题选择
if j-k>=0 then Min(f[i,j],f[i-1,j-k]+time(i,k));
91 背包问题
----- USACO Raucous Rockers
多个背包,不可以重复放物品,但放物品的顺序有限制。
F[I,j,k]表示决策到第i个物品、第j个背包,此背包花费了k的空间。
f[I,j,k]:=max(f[I-1,j,k],f[I-1,j,k-t]+p,f[i-1,j-1,maxtime-t])

92 多进程动态规划
-----巡游加拿大(IOI95、USACO)
d[i,j]=max{d[k,j]+1(a[k,i] & j<k<i),d[j,k]+1(a[I,j] & (k<j))}。

f[i,j]表示从起点出发,一个人到达i,另一个人到达j时经过的城市数。d[i,j]=d[j,i],所以我们限制i>j
分析状态(i,j),它可能是(k,j)(j<k<i)中k到达i得到(方式1),也可能是(j,k)(k<j)中k超过j到达i得到(方式2)。但它不能是(i,k)(k<j)中k到达j得到,因为这样可能会出现重复路径。即使不会出现重复路径,那么它由(j,k)通过方式2同样可以得到,所以不会遗漏解 时间复杂度O(n3)

93 动态规划
-----ZOJ cheese
f[i,j]:=f[i-kk*zl[u,1],j-kk*zl[u,2]]+a[i-kk*zl[u,1],j-kk*zl[u,2]]

94 动态规划
-----NOI 2004 berry 线性
F[I,1]:=s
F[I,j]:=max{min{s-s[l-1]},f[l-1,j-1]} (2≤j≤k, j≤l≤i)

95 动态规划
-----NOI 2004 berry 完全无向图
F[I,j]:=f[i-1,j] or (j≥w) and (f[i-1,j-w])

96 动态规划
-----石子合并 四边形不等式优化
m[i,j]=max{m[i+1,j], m[i,j-1]}+t[i,j]

97 动态规划
-----CEOI 2005 service
(k≥long,i≥1)g[i, j, k]=max{g[i-1,j,k-long]+1,g[i-1,j,k]}
(k<long,i≥1) g[i, j, k]=max{g[i-1,j-1,t-long]+1,g[i-1,j,k]}
(0≤j≤m, 0≤k<t) g[0,j,k]=0;
ans:=g[n,m,0]。

状态优化:g[i, j]=min{g[i-1,j],g[i-1,j-1]+long}
其中(a, b)+long=(a’, b’)的计算方法为:
当b+long ≤t时: a’=a; b’=b+long;
当b+long >t时: a’=a+1; b’=long;
规划的边界条件:
当0≤i≤n时,g[i,0]=(0,0)

98 动态规划
-----AHOI 2006宝库通道
f[k]:=max{f[k-1]+x[k,j]-x[k,i-1], x[k,j]-x[k,i-1]}

99 动态规划
-----Travel
A) 费用最少的旅行计划。
设f表示从起点到第i个旅店住宿一天的最小费用;g表示从起点到第i个旅店住宿一天,在满足最小费用的前提下所需要的最少天数。那么:
f=f[x]+v, g=g[x]+1
x满足:
1、 x<i,且d – d[x] <= 800(一天的最大行程)。
2、 对于所有的t < i, d – d[t] <= 800,都必须满足:
A. g[x] < g[t](f[x] = f[t]时) B. f[x] < f[t] (其他情况)
f[0] = 0,g[0] = 0。 Ans:=f[n + 1],g[n+1]。

B). 天数最少的旅行计划。
方法其实和第一问十分类似。
设g’表示从起点到第i个旅店住宿一天的最少天数;f’表示从起点到第i个旅店住宿一天,在满足最小天数前提下所需要的最少费用。那么:
g’ = g’[x] + 1, f’ = f’[x] + v
x满足:
1、 x<i,且d – d[x] <= 800(一天的最大行程)。
2、 对于所有的t < i, d – d[t] <= 800,都必须满足:
f’[x] < f’[t] g’[x] = g’[t]时
g’[x] < g’[t] 其他情况
f’[0] = 0,g’[0] = 0。 Ans:=f’[n + 1],g’[n+1]。

100 动态规划
-----NOI 2007 cash
y:=f[j]/(a[j]*c[j]+b[j]);
g:=c[j]*y*a+y*b;
f:=max(f,g)

阅读全文

与回朔算法01背包cw相关的资料

热点内容
python笔记github 浏览:828
免费ubuntu服务器地址 浏览:970
海康平台服务器信息怎么看 浏览:44
python填充不规则多边形 浏览:126
smtp服务器地址和邮箱 浏览:414
漂流瓶源码下载 浏览:313
高速怎么看服务器 浏览:740
学校照片用什么app 浏览:429
用烟缓解压力的人怎么戒烟 浏览:749
服务器4c8g中的8g是指的什么内存 浏览:884
有什么免费的钢琴陪练app 浏览:896
小肚皮app可以用什么软件下载 浏览:142
手机开机无命令 浏览:630
python模拟登录百度 浏览:490
vb编译latex 浏览:18
程序员量 浏览:722
二手车python值得买吗 浏览:358
信用卡如何推广还款app 浏览:955
加密型是什么意思 浏览:982
开盘预警抓涨停源码 浏览:235