A. 《深入理解java虚拟机(第二版)》pdf下载在线阅读全文,求百度网盘云资源
《深入理解Java虚拟机(第二版)》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1VM5oW6jdDg5bWQJ5RCdNqg
B. 深入理解java虚拟机第二版和第三版的区别
区别:
第三版是一款针对java学习打造的图书,它从Java程序员的角度出发,系统地将Java程序运行过程中涉及的各种知识整合到了一起,而第二版不仅技术更新、内容更丰富,而且实战性更强。
C. 《深入理解Java虚拟机JVM高级特性与最佳实践》epub下载在线阅读,求百度网盘云资源
《深入理解Java虚拟机(第3版)》(周志明)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1ng0b0CPBKKxMBv-zUSHsng
书名:深入理解Java虚拟机(第3版)
作者:周志明
豆瓣评分:9.5
出版社:机械工业出版社
出版年份:2019-12
页数:540
内容简介:内容介绍
这是一部从工作原理和工程实践两个维度深入剖析JVM的着作,是计算机领域公认的经典,繁体版在台湾也颇受欢迎。
自2011年上市以来,前两个版本累计印刷36次,销量超过30万册,两家主要网络书店的评论近90000条,内容上近乎零差评,是原创计算机图书领域不可逾越的丰碑。
第3版在第2版的基础上做了重大修订,内容更丰富、实战性更强:根据新版JDK对内容进行了全方位的修订和升级,围绕新技术和生产实践新增逾10万字,包含近50%的全新内容,并对第2版中含糊、瑕疵和错误内容进行了修正。
全书一共13章,分为五大部分:
第一部分(第1章)走近Java
系统介绍了Java的技术体系、发展历程、虚拟机家族,以及动手编译JDK,了解这部分内容能对学习JVM提供良好的指引。
第二部分(第2~5章)自动内存管理
详细讲解了Java的内存区域与内存溢出、垃圾收集器与内存分配策略、虚拟机性能监控与故障排除等与自动内存管理相关的内容,以及10余个经典的性能优化案例和优化方法;
第三部分(第6~9章)虚拟机执行子系统
深入分析了虚拟机执行子系统,包括类文件结构、虚拟机类加载机制、虚拟机字节码执行引擎,以及多个类加载及其执行子系统的实战案例;
第四部分(第10~11章)程序编译与代码优化
详细讲解了程序的前、后端编译与优化,包括前端的易用性优化措施,如泛型、主动装箱拆箱、条件编译等的内容的深入分析;以及后端的性能优化措施,如虚拟机的热点探测方法、HotSpot 的即时编译器、提前编译器,以及各种常见的编译期优化技术;
第五部分(第12~13章)高效并发
主要讲解了Java实现高并发的原理,包括Java的内存模型、线程与协程,以及线程安全和锁优化。
全书以实战为导向,通过大量与实际生产环境相结合的案例分析和展示了解决各种Java技术难题的方案和技巧。
作者简介:资深Java技术、机器学习和企业级开发技术专家,现任远光软件研究院院长,人工智能博士在读,着有知名畅销书《深入理解Java虚拟机:JVM高级特性与最佳实践》。
开源技术的积极倡导者和推动者,对计算机科学和相关的多个领域都有深刻的见解,尤其是人工智能、Java开发和敏捷开发等领域。曾受邀在InfoQ和IBM DeveloperWorks等网站撰写技术专栏。
着作颇丰,着有《深入理解Java虚拟机》《深入理解OSGi》,翻译了《Java虚拟机规范》等着作。其中《深入理解Java虚拟机》第1版出版于2011年,已经出至第2版,不仅销量好,而且口碑更好,累计印刷超过30次,仍长销不衰,是中文计算机图书领域公认的、难得一见的佳作。
D. java思维导图
Java虚拟机是Java语言的运行环境,它是Java别具吸引力的特性之一,属于Java的中级内容。在学习过Java初级知识后,工程师就需要学习Java虚拟机。
周志明的《深入理解Java虚拟机》详细的介绍了Java虚拟机,但是学习的过程中会发现书本很厚,知识点很多,我最开始是采用有道云笔记去记笔记,但是发现知识点过于分散,朋友建议我绘制Java虚拟机的思维导图,更有助于学习Java虚拟机。
E. 《深入理解Java虚拟机(第2版)JVM高级特性与最佳实践》epub下载在线阅读,求百度网盘云资源
《深入理解Java虚拟机(第2版)》(周志明)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1ySj-W7sTWYttLuIDrc6Bxw
书名:深入理解Java虚拟机(第2版)
作者:周志明
豆瓣评分:9.0
出版社:机械工业出版社
出版年份:2013-9-1
页数:433
内容简介:
《深入理解Java虚拟机:JVM高级特性与最佳实践(第2版)》内容简介:第1版两年内印刷近10次,4家网上书店的评论近4?000条,98%以上的评论全部为5星级的好评,是整个Java图书领域公认的经典着作和超级畅销书,繁体版在台湾也十分受欢迎。第2版在第1版的基础上做了很大的改进:根据最新的JDK 1.7对全书内容进行了全面的升级和补充;增加了大量处理各种常见JVM问题的技巧和最佳实践;增加了若干与生产环境相结合的实战案例;对第1版中的错误和不足之处的修正;等等。第2版不仅技术更新、内容更丰富,而且实战性更强。
《深入理解Java虚拟机:JVM高级特性与最佳实践(第2版)》共分为五大部分,围绕内存管理、执行子系统、程序编译与优化、高效并发等核心主题对JVM进行了全面而深入的分析,深刻揭示了JVM的工作原理。
第一部分从宏观的角度介绍了整个Java技术体系、Java和JVM的发展历程、模块化,以及JDK的编译,这对理解书中后面内容有重要帮助。
第二部分讲解了JVM的自动内存管理,包括虚拟机内存区域的划分原理以及各种内存溢出异常产生的原因;常见的垃圾收集算法以及垃圾收集器的特点和工作原理;常见虚拟机监控与故障处理工具的原理和使用方法。
第三部分分析了虚拟机的执行子系统,包括类文件结构、虚拟机类加载机制、虚拟机字节码执行引擎。
第四部分讲解了程序的编译与代码的优化,阐述了泛型、自动装箱拆箱、条件编译等语法糖的原理;讲解了虚拟机的热点探测方法、HotSpot的即时编译器、编译触发条件,以及如何从虚拟机外部观察和分析JIT编译的数据和结果;
第五部分探讨了Java实现高效并发的原理,包括JVM内存模型的结构和操作;原子性、可见性和有序性在Java内存模型中的体现;先行发生原则的规则和使用;线程在Java语言中的实现原理;虚拟机实现高效并发所做的一系列锁优化措施。
作者简介:
周志明,资深Java技术专家,对JavaEE企业级应用开发、OSGi、Java虚拟机和工作流等都有深入的研究,并在大量的实践中积累了丰富的经验。尤其精通Java虚拟机,撰写了大量与JVM相关的经典文章,被各大技术社区争相转载,是ITeye等技术社区公认的Java虚拟机方面的领袖人物之一。除本书外,还着有经典着作《深入理解OSGi:Equinox原理、应用与最佳实践》,广获读者好评。现任远光软件股份有限公司开发部总经理兼架构师,先后参与过国家电网、南方电网等多个国家级大型ERP项目的平台架构工作,对软件系统架构也有深刻的认识和体会。
F. 《深入理解Java虚拟机》pdf下载在线阅读全文,求百度网盘云资源
《深入理解Java虚拟机》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1mIyCm1Wssk4Iy9P8haqfUw
G. 深入理解Java中为什么内部类可以访问外部类的成员
内部类简介
虽然Java是一门相对比较简单的编程语言,但是对于初学者, 还是有很多东西感觉云里雾里,
理解的不是很清晰。内部类就是一个经常让初学者感到迷惑的特性。 即使现在我自认为Java学的不错了,
但是依然不是很清楚。其中一个疑惑就是为什么内部类对象可以访问外部类对象中的成员(包括成员变量和成员方法)?
早就想对内部类这个特性一探究竟了,今天终于抽出时间把它研究了一下。
内部类就是定义在一个类内部的类。定义在类内部的类有两种情况:一种是被static关键字修饰的, 叫做静态内部类,
另一种是不被static关键字修饰的, 就是普通内部类。 在下文中所提到的内部类都是指这种不被static关键字修饰的普通内部类。
静态内部类虽然也定义在外部类的里面, 但是它只是在形式上(写法上)和外部类有关系,
其实在逻辑上和外部类并没有直接的关系。而一般的内部类,不仅在形式上和外部类有关系(写在外部类的里面), 在逻辑上也和外部类有联系。
这种逻辑上的关系可以总结为以下两点:
1 内部类对象的创建依赖于外部类对象;
2 内部类对象持有指向外部类对象的引用。
上边的第二条可以解释为什么在内部类中可以访问外部类的成员。就是因为内部类对象持有外部类对象的引用。但是我们不禁要问, 为什么会持有这个引用? 接着向下看, 答案在后面。
通过反编译字节码获得答案
在源代码层面, 我们无法看到原因,因为Java为了语法的简介, 省略了很多该写的东西, 也就是说很多东西本来应该在源代码中写出, 但是为了简介起见, 不必在源码中写出,编译器在编译时会加上一些代码。 现在我们就看看Java的编译器为我们加上了什么?
首先建一个工程TestInnerClass用于测试。 在该工程中为了简单起见, 没有创建包, 所以源代码直接在默认包中。在该工程中, 只有下面一个简单的文件。
?
1
2
3
4
5
6
7
8
9
public class Outer {
int outerField = 0;
class Inner{
void InnerMethod(){
int i = outerField;
}
}
}
该文件很简单, 就不用过多介绍了。 在外部类Outer中定义了内部类Inner, 并且在Inner的方法中访问了Outer的成员变量outerField。
虽然这两个类写在同一个文件中, 但是编译完成后, 还是生成各自的class文件:
这里我们的目的是探究内部类的行为, 所以只反编译内部类的class文件Outer$Inner.class 。 在命令行中, 切换到工程的bin目录, 输入以下命令反编译这个类文件:
?
1
javap -classpath . -v Outer$Inner
-classpath . 说明在当前目录下寻找要反编译的class文件
-v 加上这个参数输出的信息比较全面。包括常量池和方法内的局部变量表, 行号, 访问标志等等。
注意, 如果有包名的话, 要写class文件的全限定名, 如:
?
1
javap -classpath . -v com..Outer$Inner
反编译的输出结果很多, 为了篇幅考虑, 在这里我们省略了常量池。 下面给出除了常量池之外的输出信息。
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
{
final Outer this$0;
flags: ACC_FINAL, ACC_SYNTHETIC
Outer$Inner(Outer);
flags:
Code:
stack=2, locals=2, args_size=2
0: aload_0
1: aload_1
2: putfield #10 // Field this$0:LOuter;
5: aload_0
6: invokespecial #12 // Method java/lang/Object."<init>":()V
9: return
LineNumberTable:
line 5: 0
LocalVariableTable:
Start Length Slot Name Signature
0 10 0 this LOuter$Inner;
void InnerMethod();
flags:
Code:
stack=1, locals=2, args_size=1
0: aload_0
1: getfield #10 // Field this$0:LOuter;
4: getfield #20 // Field Outer.outerField:I
7: istore_1
8: return
LineNumberTable:
line 7: 0
line 8: 8
LocalVariableTable:
Start Length Slot Name Signature
0 9 0 this LOuter$Inner;
8 1 1 i I
}</init>
首先我们会看到, 第一行的信息如下:
?
1
final Outer this$0;
这句话的意思是, 在内部类Outer$Inner中, 存在一个名字为this$0 , 类型为Outer的成员变量, 并且这个变量是final的。
其实这个就是所谓的“在内部类对象中存在的指向外部类对象的引用”。但是我们在定义这个内部类的时候, 并没有声明它,
所以这个成员变量是编译器加上的。
虽然编译器在创建内部类时为它加上了一个指向外部类的引用, 但是这个引用是怎样赋值的呢?毕竟必须先给他赋值,它才能指向外部类对象。下面我们把注意力转移到构造函数上。 下面这段输出是关于构造函数的信息。
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Outer$Inner(Outer);
flags:
Code:
stack=2, locals=2, args_size=2
0: aload_0
1: aload_1
2: putfield #10 // Field this$0:LOuter;
5: aload_0
6: invokespecial #12 // Method java/lang/Object."<init>":()V
9: return
LineNumberTable:
line 5: 0
LocalVariableTable:
Start Length Slot Name Signature
0 10 0 this LOuter$Inner;</init>
我们知道, 如果在一个类中, 不声明构造方法的话, 编译器会默认添加一个无参数的构造方法。 但是这句话在这里就行不通了, 因为我们明明看到, 这个构造函数有一个构造方法, 并且类型为Outer。 所以说,
编译器会为内部类的构造方法添加一个参数, 参数的类型就是外部类的类型。
下面我们看看在构造参数中如何使用这个默认添加的参数。 我们来分析一下构造方法的字节码。 下面是每行字节码的意义:
aload_0 :
将局部变量表中的第一个引用变量加载到操作数栈。 这里有几点需要说明。
局部变量表中的变量在方法执行前就已经初始化完成;局部变量表中的变量包括方法的参数;成员方法的局部变量表中的第一个变量永远是this;操作数栈就是
执行当前代码的栈。所以这句话的意思是: 将this引用从局部变量表加载到操作数栈。
aload_1:
将局部变量表中的第二个引用变量加载到操作数栈。 这里加载的变量就是构造方法中的Outer类型的参数。
putfield #10 // Field this$0:LOuter;
使用操作数栈顶端的引用变量为指定的成员变量赋值。 这里的意思是将外面传入的Outer类型的参数赋给成员变量this$0 。
这一句putfield字节码就揭示了, 指向外部类对象的这个引用变量是如何赋值的。
下面几句字节码和本文讨论的话题无关, 只做简单的介绍。 下面几句字节码的含义是: 使用this引用调用父类(Object)的构造方法然后返回。
用我们比较熟悉的形式翻译过来, 这个内部类和它的构造函数有点像这样: (注意, 这里不符合Java的语法, 只是为了说明问题)
?
1
2
3
4
5
6
7
8
class Outer$Inner{
final Outer this$0;
public Outer$Inner(Outer outer){
this.this$0 = outer;
super();
}
}
说到这里, 可以推想到, 在调用内部类的构造器初始化内部类对象的时候, 编译器默认也传入外部类的引用。 调用形式有点像这样: (注意, 这里不符合java的语法, 只是为了说明问题)
vcq9ysfP4M2stcShoyDU2sTasr//wOC1xLPJ1LGx5MG/b3V0ZXJGaWVsZKOsIM/Cw++NDQtcSjugo8YnI+Cgo8cHJlIGNsYXNzPQ=="brush:java;">
void InnerMethod();
flags:
Code:
stack=1, locals=2, args_size=1
0: aload_0
1: getfield #10 // Field this$0:LOuter;
4: getfield #20 // Field
Outer.outerField:I
7: istore_1
8: return
getfield #10 // Field this$0:LOuter;
将成员变量this$0加载到操作数栈上来
getfield #20 // Field Outer.outerField:I
使用上面加载的this$0引用, 将外部类的成员变量outerField加载到操作数栈
istore_1
将操作数栈顶端的int类型的值保存到局部变量表中的第二个变量上(注意, 第一个局部变量被this占用,
第二个局部变量是i)。操作数栈顶端的int型变量就是上一步加载的outerField变量。 所以, 这句字节码的含义就是:
使用outerField为i赋值。
上面三步就是内部类中是如何通过指向外部类对象的引用, 来访问外部类成员的。
文章写到这里, 相信读者对整个原理就会有一个清晰的认识了。 下面做一下总结:
本文通过反编译内部类的字节码, 说明了内部类是如何访问外部类对象的成员的,除此之外, 我们也对编译器的行为有了一些了解, 编译器在编译时会自动加上一些逻辑, 这正是我们感觉困惑的原因。
关于内部类如何访问外部类的成员, 分析之后其实也很简单, 主要是通过以下几步做到的:
1 编译器自动为内部类添加一个成员变量, 这个成员变量的类型和外部类的类型相同, 这个成员变量就是指向外部类对象的引用;
2 编译器自动为内部类的构造方法添加一个参数, 参数的类型是外部类的类型, 在构造方法内部使用这个参数为1中添加的成员变量赋值;
3 在调用内部类的构造函数初始化内部类对象时, 会默认传入外部类的引用。
H. 深入理解Java虚拟机的目录
前言
致谢
第一部分 走近Java
第1章 走近Java / 2
1.1 概述 / 2
1.2 Java技术体系 / 3
1.3 Java发展史 / 5
1.4 展望Java技术的未来 / 9
1.4.1 模块化 / 9
1.4.2 混合语言 / 9
1.4.3 多核并行 / 11
1.4.4 进一步丰富语法 / 12
1.4.5 64位虚拟机 / 13
1.5 实战:自己编译JDK / 13
1.5.1 获取JDK源码 / 13
1.5.2 系统需求 / 14
1.5.3 构建编译环境 / 15
1.5.4 准备依赖项 / 17
1.5.5 进行编译 / 18
1.6 本章小结 / 21
第二部分 自动内存管理机制
第2章 Java内存区域与内存溢出异常 / 24
2.1 概述 / 24
2.2 运行时数据区域 / 25
2.2.1 程序计数器 / 25
2.2.2 Java虚拟机栈 / 26
2.2.3 本地方法栈 / 27
2.2.4 Java堆 / 27
2.2.5 方法区 / 28
2.2.6 运行时常量池 / 29
2.2.7 直接内存 / 29
2.3 对象访问 / 30
2.4 实战:OutOfMemoryError异常 / 32
2.4.1 Java堆溢出 / 32
2.4.2 虚拟机栈和本地方法栈溢出 / 35
2.4.3 运行时常量池溢出 / 38
2.4.4 方法区溢出 / 39
2.4.5 本机直接内存溢出 / 41
2.5 本章小结 / 42
第3章 垃圾收集器与内存分配策略 / 43
3.1 概述 / 43
3.2 对象已死? / 44
3.2.1 引用计数算法 / 44
3.2.2 根搜索算法 / 46
3.2.3 再谈引用 / 47
3.2.4 生存还是死亡? / 48
3.2.5 回收方法区 / 50
3.3 垃圾收集算法 / 51
3.3.1 标记 -清除算法 / 51
3.3.2 复制算法 / 52
3.3.3 标记-整理算法 / 54
3.3.4 分代收集算法 / 54
3.4 垃圾收集器 / 55
3.4.1 Serial收集器 / 56
3.4.2 ParNew收集器 / 57
3.4.3 Parallel Scavenge收集器 / 59
3.4.4 Serial Old收集器 / 60
3.4.5 Parallel Old收集器 / 61
3.4.6 CMS收集器 / 61
3.4.7 G1收集器 / 64
3.4.8 垃圾收集器参数总结 / 64
3.5 内存分配与回收策略 / 65
3.5.1 对象优先在Eden分配 / 66
3.5.2 大对象直接进入老年代 / 68
3.5.3 长期存活的对象将进入老年代 / 69
3.5.4 动态对象年龄判定 / 71
3.5.5 空间分配担保 / 73
3.6 本章小结 / 75
第4章 虚拟机性能监控与故障处理工具 / 76
4.1 概述 / 76
4.2 JDK的命令行工具 / 76
4.2.1 jps:虚拟机进程状况工具 / 79
4.2.2 jstat:虚拟机统计信息监视工具 / 80
4.2.3 jinfo:Java配置信息工具 / 82
4.2.4 jmap:Java内存映像工具 / 82
4.2.5 jhat:虚拟机堆转储快照分析工具 / 84
4.2.6 jstack:Java堆栈跟踪工具 / 85
4.3 JDK的可视化工具 / 87
4.3.1 JConsole:Java监视与管理控制台 / 88
4.3.2 VisualVM:多合一故障处理工具 / 96
4.4 本章小结 / 105
第5章 调优案例分析与实战 / 106
5.1 概述 / 106
5.2 案例分析 / 106
5.2.1 高性能硬件上的程序部署策略 / 106
5.2.2 集群间同步导致的内存溢出 / 109
5.2.3 堆外内存导致的溢出错误 / 110
5.2.4 外部命令导致系统缓慢 / 112
5.2.5 服务器JVM进程崩溃 / 113
5.3 实战:Eclipse运行速度调优 / 114
5.3.1 调优前的程序运行状态 / 114
5.3.2 升级JDK 1.6的性能变化及兼容问题 / 117
5.3.3 编译时间和类加载时间的优化 / 122
5.3.4 调整内存设置控制垃圾收集频率 / 126
5.3.5 选择收集器降低延迟 / 130
5.4 本章小结 / 133
第三部分 虚拟机执行子系统
第6章 类文件结构 / 136
6.1 概述 / 136
6.2 无关性的基石 / 136
6.3 Class类文件的结构 / 138
6.3.1 魔数与Class文件的版本 / 139
6.3.2 常量池 / 141
6.3.3 访问标志 / 147
6.3.4 类索引、父类索引与接口索引集合 / 148
6.3.5 字段表集合 / 149
6.3.6 方法表集合 / 153
6.3.7 属性表集合 / 155
6.4 Class文件结构的发展 / 168
6.5 本章小结 / 170
第7章 虚拟机类加载机制 / 171
7.1 概述 / 171
7.2 类加载的时机 / 172
7.3 类加载的过程 / 176
7.3.1 加载 / 176
7.3.2 验证 / 178
7.3.3 准备 / 181
7.3.4 解析 / 182
7.3.5 初始化 / 186
7.4 类加载器 / 189
7.4.1 类与类加载器 / 189
7.4.2 双亲委派模型 / 191
7.4.3 破坏双亲委派模型 / 194
7.5 本章小结 / 197
第8章 虚拟机字节码执行引擎 / 198
8.1 概述 / 198
8.2 运行时栈帧结构 / 199
8.2.1 局部变量表 / 199
8.2.2 操作数栈 / 204
8.2.3 动态连接 / 206
8.2.4 方法返回地址 / 206
8.2.5 附加信息 / 207
8.3 方法调用 / 207
8.3.1 解析 / 207
8.3.2 分派 / 209
8.4 基于栈的字节码解释执行引擎 / 221
8.4.1 解释执行 / 221
8.4.2 基于栈的指令集与基于寄存器的指令集 / 223
8.4.3 基于栈的解释器执行过程 / 224
8.5 本章小结 / 230
第9章 类加载及执行子系统的案例与实战 / 231
9.1 概述 / 231
9.2 案例分析 / 231
9.2.1 Tomcat:正统的类加载器架构 / 232
9.2.2 OSGi:灵活的类加载器架构 / 235
9.2.3 字节码生成技术与动态代理的实现 / 238
9.2.4 Retrotranslator:跨越JDK版本 / 242
9.3 实战:自己动手实现远程执行功能 / 246
9.3.1 目标 / 246
9.3.2 思路 / 247
9.3.3 实现 / 248
9.3.4 验证 / 255
9.4 本章小结 / 256
第四部分 程序编译与代码优化
第10章 早期(编译期)优化 / 258
10.1 概述 / 258
10.2 Javac编译器 / 259
10.2.1 Javac的源码与调试 / 259
10.2.2 解析与填充符号表 / 262
10.2.3 注解处理器 / 264
10.2.4 语义分析与字节码生成 / 264
10.3 Java语法糖的味道 / 268
10.3.1 泛型与类型擦除 / 268
10.3.2 自动装箱、拆箱与遍历循环 / 273
10.3.3 条件编译 / 275
10.4 实战:插入式注解处理器 / 276
10.4.1 实战目标 / 276
10.4.2 代码实现 / 277
10.4.3 运行与测试 / 284
10.4.4 其他应用案例 / 286
10.5 本章小结 / 286
第11章 晚期(运行期)优化 / 287
11.1 概述 / 287
11.2 HotSpot虚拟机内的即时编译器 / 288
11.2.1 解释器与编译器 / 288
11.2.2 编译对象与触发条件 / 291
11.2.3 编译过程 / 294
11.2.4 查看与分析即时编译结果 / 297
11.3 编译优化技术 / 301
11.3.1 优化技术概览 / 301
11.3.2 公共子表达式消除 / 305
11.3.3 数组边界检查消除 / 307
11.3.4 方法内联 / 307
11.3.5 逃逸分析 / 309
11.4 Java与C/C++的编译器对比 / 311
11.5 本章小结 / 313
第五部分 高效并发
第12章 Java内存模型与线程 / 316
12.1 概述 / 316
12.2 硬件的效率与一致性 / 317
12.3 Java内存模型 / 318
12.3.1 主内存与工作内存 / 319
12.3.2 内存间交互操作 / 320
12.3.3 对于volatile型变量的特殊规则 / 322
12.3.4 对于long和double型变量的特殊规则 / 327
12.3.5 原子性、可见性与有序性 / 328
12.3.6 先行发生原则 / 330
12.4 Java与线程 / 333
12.4.1 线程的实现 / 333
12.4.2 Java线程调度 / 337
12.4.3 状态转换 / 339
12.5 本章小结 / 341
第13章 线程安全与锁优化 / 342
13.1 概述 / 342
13.2 线程安全 / 343
13.2.1 Java语言中的线程安全 / 343
13.2.2 线程安全的实现方法 / 348
13.3 锁优化 / 356
13.3.1 自旋锁与自适应自旋 / 356
13.3.2 锁消除 / 357
13.3.3 锁粗化 / 358
13.3.4 轻量级锁 / 358
13.3.5 偏向锁 / 361
13.4 本章小结 / 362
附录A Java虚拟机家族 / 363
附录B 虚拟机字节码指令表 / 366
附录C HotSpot虚拟机主要参数表 / 372
附录D 对象查询语言(OQL)简介 / 376
附录E JDK历史版本轨迹 / 383
I. 用java代码调用虚拟打印将DOC转PDF,可是,当多人同时访问调用时候,只能转化成功一个,我改怎么解决
您好
Java虚拟机是一个想象中的机器,在实际的计算机上通过软件模拟来实现。Java虚拟机有自己想象中的硬件,如处理器、堆栈、寄存器等,还具有相应的指令系统。
1.为什么要使用Java虚拟机
Java语言的一个非常重要的特点就是与平台的无关性。而使用Java虚拟机是实现这一特点的关键。一般的高级语言如果要在不同的平台上运行,至少需要编译成不同的目标代码。而引入Java语言虚拟机后,Java语言在不同平台上运行时不需要重新编译。Java语言使用模式Java虚拟机屏蔽了与具体平台相关的信息,使得Java语言编译程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台上不加修改地运行。Java虚拟机在执行字节码时,把字节码解释成具体平台上的机器指令执行。
2.谁需要了解Java虚拟机
Java虚拟机是Java语言底层实现的基础,对Java语言感兴趣的人都应对Java虚拟机有个大概的了解。这有助于理解Java语言的一些性质,也有助于使用Java语言。对于要在特定平台上实现Java虚拟机的软件人员,Java语言的编译器作者以及要用硬件芯片实现Java虚拟机的人来说,则必须深刻理解Java虚拟机的规范。另外,如果你想扩展Java语言,或是把其它语言编译成Java语言的字节码,你也需要深入地了解Java虚拟机。
J. 深入理解java虚拟机应届生需要理解到什么程度
从进程的角度解释JVM
让我们尝试从操作系统的层面来理解虚拟机。我们知道,虚拟机是运行在操作系统之中的,那么什么东西才能在操作系统中运行呢?当然是进程,因为进程是操作系统中的执行单位。可以这样理解,当它在运行的时候,它就是一个操作系统中的进程实例,当它没有在运行时(作为可执行文件存放于文件系统中),可以把它叫做程序。
对命令行比较熟悉的同学,都知道其实一个命令对应一个可执行的二进制文件,当敲下这个命令并且回车后,就会创建一个进程,加载对应的可执行文件到进程的地址空间中,并且执行其中的指令。下面对比C语言和Java语言的HelloWorld程序来说明问题。
首先编写C语言版的HelloWorld程序。
[cpp] view plain
#include <stdio.h>
#include <stdlib.h>
int main(void) {
printf("hello world\n");
return 0;
}
编译C语言版的HelloWorld程序:
[plain] view plain
gcc HelloWorld.c -o HelloWorld
运行C语言版的HelloWorld程序:
[plain] view plain
zhangjg@linux:/deve/workspace/HelloWorld/src$ ./HelloWorld
hello world
gcc编译器编译后的文件直接就是可被操作系统识别的二进制可执行文件,当我们在命令行中敲下 ./HelloWorld这条命令的时候, 直接创建一个进程, 并且将可执行文件加载到进程的地址空间中, 执行文件中的指令。
作为对比, 我们看一下Java版HelloWord程序的编译和执行形式。
首先编写源文件HelloWord.java :
[java] view plain
public class HelloWorld {
public static void main(String[] args) {
System.out.println("HelloWorld");
}
}
编译Java版的HelloWorld程序:
[java] view plain
zhangjg@linux:/deve/workspace/HelloJava/src$ javac HelloWorld.java
zhangjg@linux:/deve/workspace/HelloJava/src$ ls
HelloWorld.class HelloWorld.java
运行Java版的HelloWorld程序:
[plain] view plain
zhangjg@linux:/deve/workspace/HelloJava/src$ java -classpath . HelloWorld
HelloWorld
从上面的过程可以看到, 我们在运行Java版的HelloWorld程序的时候, 敲入的命令并不是 ./HelloWorld.class 。 因为class文件并不是可以直接被操作系统识别的二进制可执行文件 。 我们敲入的是java这个命令。 这个命令说明, 我们首先启动的是一个叫做java的程序, 这个java程序在运行起来之后就是一个JVM进程实例。
上面的命令执行流程是这样的:
java命令首先启动虚拟机进程,虚拟机进程成功启动后,读取参数“HelloWorld”,把他作为初始类加载到内存,对这个类进行初始化和动态链接(关于类的初始化和动态链接会在后面的博客中介绍),然后从这个类的main方法开始执行。也就是说我们的.class文件不是直接被系统加载后直接在cpu上执行的,而是被一个叫做虚拟机的进程托管的。首先必须虚拟机进程启动就绪,然后由虚拟机中的类加载器加载必要的class文件,包括jdk中的基础类(如String和Object等),然后由虚拟机进程解释class字节码指令,把这些字节码指令翻译成本机cpu能够识别的指令,才能在cpu上运行。
从这个层面上来看,在执行一个所谓的java程序的时候,真真正正在执行的是一个叫做Java虚拟机的进程,而不是我们写的一个个的class文件。这个叫做虚拟机的进程处理一些底层的操作,比如内存的分配和释放等等。我们编写的class文件只是虚拟机进程执行时需要的“原料”。这些“原料”在运行时被加载到虚拟机中,被虚拟机解释执行,以控制虚拟机实现我们java代码中所定义的一些相对高层的操作,比如创建一个文件等,可以将class文件中的信息看做对虚拟机的控制信息,也就是一种虚拟指令。