⑴ 0的补码是唯一的吗
对。0的源码、反码各有2个,补码唯一,为全0.
⑵ +0或者-0的源码、反码、补码分别是什么补码是一样的吗
数字,是以各种代码,存入计算机的。
数字,可以分成:正数、负数、零。
世界上,只有一个零。
但是,原码反码,都编制了两组代码!
这就是违反天道了。
-------------------
零的原码,两个代码是:
[+0]原码 = 0000 0000
[-0]原码 = 1000 0000
反码,不甘落后,也是两个代码:
[+0]反码 = 0000 0000
[-0]反码 = 1111 1111
它们,都是重复定义了“零的编码”。
计算机,根本就无法使用这种混乱的代码。
而且,由于零多占用一组代码,那么,所能表示的数字,必然就少一个。
如-128,八位的原码反码,都不能表示。
-------------------
在计算机系统中,数值,一律采用补码表示和存储。
只用补码,也是说,原码和反码,都无法使用。
补码的理论,来源于数学的规律,并非是人为的胡编乱造。
零,在补码中,只用唯一的一组代码,这就不会产生混乱。
零的八位补码,就是一个:0000 0000。
并没有违规的正负零。
-------------------
前面已经说过,原码反码,都无法使用。
那么,求补码用的“取反加一”,也就失去了理论基础。
求补码,是有定义式的。
这定义式,是由数学理论推导出来的,要比胡说八道的“取反加一”更准确严密。
当 X >= 0: [ X ]补码 = X;
当 X < 0: [ X ]补码 = X + 2^n, n 是补码的位数。
按照定义式,就可以求出来-128 的八位补码了:
[-128]补码 = -128 + 2^8 = 128 = 1000 0000 (二进制)。
如果用“取反加一”,可就难办了。
因为,-128 并没有原码和反码,拿什么取反加一!
⑶ 二进制的原码、补码、反码详解
计算机中,并没有原码和反码,只是使用补码,代表正负数。
使用补码的意义:可以把减法或负数,转换为加法运算。从而简化计算机的硬件。
------------
比如钟表,时针转一圈,周期是 12 小时。
倒拨 3 小时,可以用正拨 9 小时代替。
9,就称为-3 的补数。
计算方法:12-3 = 9。
对于分针,倒拨 X 分,就可以用正拨 60-X 代替。
------------
如果,限定了两位十进制数 (0~99),周期就是 100。
那么,减一,就可以用 +99 代替。
24-1 = 23
24 + 99 = (1) 23
忽略进位,只取两位数,这两种算法,结果就是相同的。
于是,99 就是 -1 的补数。
其它负数的补数,大家可以自己求!
求出了负数的补数,就可用加法,代替减法了。
------------
计算机中使用二进制,补数,就改称为【补码】。
常用的八位二进制是:0000 0000~1111 1111。
它们代表了十进制:0~255,周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128,补码是 1000 0000 = 128。
计算公式:负数的补码=256+这个负数。
正数,直接运算即可,不需要求补码。
也可以说,正数本身就是补码。
------------
补码的应用如: 7-3 = 4。
用补码的计算过程如下:
7 的补码=0000 0111
-3的补码=1111 1101
--相加-------------
得:(1) 0000 0100 = 4 的补码
舍弃进位,只保留八位,作为结果即可。
这就是:使用补码,加法就代替了减法。
所以,在计算机中,有一个加法器,就够用了。
原码和反码,都没有这种功能。
------------
原码和反码,毫无用处。计算机中,根本就没有它们。
⑷ +0或者-0的源码、反码、补码
[+0]原码=0000 0000, [-0]原码=1000 0000
[+0]反码=0000 0000, [-0]反码=1111 1111
[+0]补码=0000 0000, [-0]补码=0000 0000
补码没有正0与负0之分。正数的反码、补码和其源码相同,负数的反码是其源码,除符号位外其他位取反负数的补码是取其反码后加1。
详细释义:
所谓原码就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
(一)反码表示法规定:
1、正数的反码与其原码相同;
2、负数的反码是对正数逐位取反,符号位保持为1;
(二)对于二进制原码10010求反码:
((10010)原)反=对正数(00010)原含符号位取反= 反码11101 (10010,1为符号码,故为负)
(11101) 二进制= -2 十进制
(三)对于八进制:
举例 某linux平台设置了默认的目录权限为755(rwxr-xr-x),八进制表示为0755,那么,umask是权限位755的反码,计算得到umask为0022的过程如下:
原码0755= 反码 0022 (逐位解释:0为符号位,0为7-7,2为7-5,2为7-5)
(四)补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
(4)0的源码表示不唯一吗扩展阅读
转换方法
由于正数的原码、补码、反码表示方法均相同,不需转换。在此,仅以负数情况分析。
(1) 已知原码,求补码。
例:已知某数X的原码为10110100B,试求X的补码和反码。
解:由[X]原=10110100B知,X为负数。求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
1 0 1 1 0 1 0 0 原码
1 1 0 0 1 0 1 1 反码,符号位不变,数值位取反
1 +1
1 1 0 0 1 1 00 补码
故:[X]补=11001100B,[X]反=11001011B。
(2) 已知补码,求原码。
分析:按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1 有方法。
例:已知某数X的补码11101110B,试求其原码。
解:由[X]补=11101110B知,X为负数。
采用逆推法
1 1 1 0 1 1 1 0 补码
1 1 1 0 1 1 0 1 反码(末位减1)
1 0 0 1 0 0 1 0 原码(符号位不变,数值位取反)