导航:首页 > 源码编译 > 遗传算法matlab程序实例

遗传算法matlab程序实例

发布时间:2025-04-16 03:59:09

A. MATLAB线性神经网络的程序,跪求。。

美国Michigan 大学的 Holland 教授提出的遗传算法(GeneticAlgorithm, GA)是求解复杂的组合优化问题的有效方法 ,其思想来自于达尔文进化论和门德尔松遗传学说 ,它模拟生物进化过程来从庞大的搜索空间中筛选出较优秀的解,是一种高效而且具有强鲁棒性方法。所以,遗传算法在求解TSP和 MTSP问题中得到了广泛的应用。

matlab程序如下:

function[opt_rte,opt_brk,min_dist] =mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter)

%%

%实例

% n = 20;%城市个数

% xy = 10*rand(n,2);%城市坐标 随机产生,也可以自己设定

% salesmen = 5;%旅行商个数

% min_tour = 3;%每个旅行商最少访问的城市数

% pop_size = 80;%种群个数

% num_iter = 200;%迭代次数

% a = meshgrid(1:n);

% dmat =reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);

% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour,...

% pop_size,num_iter);%函数

%%

[N,dims]= size(xy); %城市矩阵大小

[nr,nc]= size(dmat); %城市距离矩阵大小

n = N -1;% 除去起始的城市后剩余的城市的数

% 初始化路线、断点的选择

num_brks= salesmen-1;

dof = n- min_tour*salesmen; %初始化路线、断点的选择

addto =ones(1,dof+1);

for k =2:num_brks

addto = cumsum(addto);

end

cum_prob= cumsum(addto)/sum(addto);

%% 初始化种群

pop_rte= zeros(pop_size,n); % 种群路径

pop_brk= zeros(pop_size,num_brks); % 断点集合的种群

for k =1:pop_size

pop_rte(k,:) = randperm(n)+1;

pop_brk(k,:) = randbreaks();

end

% 画图路径曲线颜色

clr =[1 0 0; 0 0 1; 0.67 0 1; 0 1 0; 1 0.5 0];

ifsalesmen > 5

clr = hsv(salesmen);

end

%%

% 基于遗传算法的MTSP

global_min= Inf; %初始化最短路径

total_dist= zeros(1,pop_size);

dist_history= zeros(1,num_iter);

tmp_pop_rte= zeros(8,n);%当前的路径设置

tmp_pop_brk= zeros(8,num_brks); %当前的断点设置

new_pop_rte= zeros(pop_size,n);%更新的路径设置

new_pop_brk= zeros(pop_size,num_brks);%更新的断点设置

foriter = 1:num_iter

% 计算适应值

for p = 1:pop_size

d = 0;

p_rte = pop_rte(p,:);

p_brk = pop_brk(p,:);

rng = [[1 p_brk+1];[p_brk n]]';

for s = 1:salesmen

d = d + dmat(1,p_rte(rng(s,1)));% 添加开始的路径

for k = rng(s,1):rng(s,2)-1

d = d + dmat(p_rte(k),p_rte(k+1));

end

d = d + dmat(p_rte(rng(s,2)),1); % 添加结束的的路径

end

total_dist(p) = d;

end

% 找到种群中最优路径

[min_dist,index] = min(total_dist);

dist_history(iter) = min_dist;

if min_dist < global_min

global_min = min_dist;

opt_rte = pop_rte(index,:); %最优的最短路径

opt_brk = pop_brk(index,:);%最优的断点设置

rng = [[1 opt_brk+1];[opt_brk n]]';%设置记录断点的方法

figure(1);

for s = 1:salesmen

rte = [1 opt_rte(rng(s,1):rng(s,2))1];

plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:));

title(sprintf('城市数目为 = %d,旅行商数目为 = %d,总路程 = %1.4f, 迭代次数 =%d',n+1,salesmen,min_dist,iter));

hold on

grid on

end

plot(xy(1,1),xy(1,2),'ko');

hold off

end

% 遗传操作

rand_grouping = randperm(pop_size);

for p = 8:8:pop_size

rtes = pop_rte(rand_grouping(p-7:p),:);

brks = pop_brk(rand_grouping(p-7:p),:);

dists =total_dist(rand_grouping(p-7:p));

[ignore,idx] = min(dists);

best_of_8_rte = rtes(idx,:);

best_of_8_brk = brks(idx,:);

rte_ins_pts = sort(ceil(n*rand(1,2)));

I = rte_ins_pts(1);

J = rte_ins_pts(2);

for k = 1:8 %产生新种群

tmp_pop_rte(k,:) = best_of_8_rte;

tmp_pop_brk(k,:) = best_of_8_brk;

switch k

case 2% 倒置操作

tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J));

case 3 % 互换操作

tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I]);

case 4 % 滑动平移操作

tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I]);

case 5% 更新断点

tmp_pop_brk(k,:) = randbreaks();

case 6 % 倒置并更新断点

tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J));

tmp_pop_brk(k,:) =randbreaks();

case 7 % 互换并更新断点

tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I]);

tmp_pop_brk(k,:) =randbreaks();

case 8 % 评议并更新断点

tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I]);

tmp_pop_brk(k,:) =randbreaks();

otherwise

end

end

new_pop_rte(p-7:p,:) = tmp_pop_rte;

new_pop_brk(p-7:p,:) = tmp_pop_brk;

end

pop_rte = new_pop_rte;

pop_brk = new_pop_brk;

end

figure(2)

plot(dist_history,'b','LineWidth',2);

title('历史最优解');

xlabel('迭代次数')

ylabel('最优路程')

% 随机产生一套断点 的集合

function breaks = randbreaks()

if min_tour == 1 % 一个旅行商时,没有断点的设置

tmp_brks = randperm(n-1);

breaks =sort(tmp_brks(1:num_brks));

else % 强制断点至少找到最短的履行长度

num_adjust = find(rand <cum_prob,1)-1;

spaces =ceil(num_brks*rand(1,num_adjust));

adjust = zeros(1,num_brks);

for kk = 1:num_brks

adjust(kk) = sum(spaces == kk);

end

breaks = min_tour*(1:num_brks) +cumsum(adjust);

end

end

disp('最优路径为:/n')

disp(opt_rte);

disp('其中断点为为:/n')

disp(opt_brk);

end


B. 用matlab遗传算法解决函数优化问题

在使用MATLAB中的遗传算法解决函数优化问题时,我们需要运用GA函数,这是遗传算法的具体实现。GA函数的调用格式是:X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)。其中,FITNESSFCN代表待优化的函数,NVARS表示变量的数量,lb和ub分别是变量的下界和上界。对于特定问题,你需要提供这四个参数的值,而其他参数可以暂时用[]代替。

需要注意的是,MATLAB的GA函数默认是寻找函数的最小值。如果你的目标是找到函数的最大值,则需要将待优化的函数取负数,即编写如下函数:

function y=myfun(x)
y=-x.*sin(10*pi.*x)-2;

将这个函数保存为myfun.m文件,然后在MATLAB命令行中输入以下代码:x=ga(@myfun,1,[],[],[],[],[1],[2])。执行后,可能会看到这样的输出结果:Optimization terminated: average change in the fitness value less than options.TolFun. x = 1.8506

这是因为遗传算法实际上是在指定的取值范围内随机选取初始值,然后通过遗传操作来寻找最优解。因此,每次运行的结果可能会有所不同。例如,再次运行相同的代码,你可能会得到类似的结果:Optimization terminated: average change in the fitness value less than options.TolFun. x = 1.6507

具体原因可以参考遗传算法的相关资料,了解其背后的原理和机制。

C. 怎么评价MATLAB中gamultiobj函数(多目标遗传算法)的计算结果比如下面的函数和其部分结果

您好,多目标遗传算法可以得到Pareto Front图,即您展示的结果。至于评价方法应由您自己确定,比如最简单的线性加权函数评价方法,评价值Evalue=w1*minf1(x1,x2)+w2*minf2(x1,x2),其中w1+w2=1。
总的来说,就是依据自己的需要进行评价,matlab中不含有评价方法(因为评价方法很灵活)。

D. MATLAB遗传算法

function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值

flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体

for i=1:sizepop

% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;

clc
clear all
% warning off

%% 遗传算法参数
maxgen=50; %进化代数
sizepop=100; %种群规模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %变异概率
lenchrom=[1 1]; %变量字串长度
bound=[-5 5;-5 5]; %变量范围

%% 个体初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %种群结构体
avgfitness=[]; %种群平均适应度
bestfitness=[]; %种群最佳适应度
bestchrom=[]; %适应度最好染色体
% 初始化种群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %随机产生个体
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 这个是我的测试函数
% 如果有这个函数的话,可以得到最优值

end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[];

%% 进化开始
for i=1:maxgen

% 选择操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;

end

%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束

%% 结果显示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函数值曲线 ' '终止代数=' num2str(maxgen)],'fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('函数值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函数值 变量');
% 窗口显示
disp([bestfitness x]);

E. 在matlab中如何用遗传算法求极值

matlab有遗传算法工具箱。

核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意】matlab工具箱函数必须放在工作目录下
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

F. 求解:怎样使用MATLAB中的遗传算法计算器Optimization Tool中的GA——Genetic Algorithm,如图,重谢

比如通过MATLAB遗传算法的思想求解f(x)=x*sin(10pi*x)+2.0,-1<=x<=2的最大值问题,结果精确到3位小数。

首先在matlab命令窗口输入f=@(x)-(x*sin(10*pi*x)+2) 输出结果为

>> f=@(x)-(x*sin(10*pi*x)+2)

f =

@(x)-(x*sin(10*pi*x)+2)

接着输入gatool会打开遗传算法工具箱

显示51代之后算法终止,最小结果为-3.85027334719567,对应的x为1.851,由于自定义函数加了负号,所以原式的最大值为3.85027334719567,对应的x为1.851。

不过这是遗传算法得到的结果,每次运行的结果可能会有所不同,而且不一定是确切的最大值。

遗传算法适合应用在一些求最优解比较复杂的问题(常规的算法运算时间过长,甚至无法解决)。

阅读全文

与遗传算法matlab程序实例相关的资料

热点内容
解压胶带有毒吗 浏览:561
如何把闹铃设置成自己喜欢的安卓 浏览:512
安卓手机怎么加电量组件 浏览:423
ibm服务器如何设置启动不了机 浏览:148
二次结构构造柱加密区 浏览:242
php必须在什么服务器下运行 浏览:359
linux不启动桌面 浏览:277
李洪成pdf 浏览:223
单片机驱动能力 浏览:800
安卓开机为什么要激活 浏览:382
橡胶压缩永久变形国标 浏览:847
dns服务器地址是一样的吗 浏览:155
手游单机app什么兔的软件 浏览:393
苹果耳机在安卓怎么查看电量 浏览:146
手机usb连接到电脑哪个文件夹 浏览:811
有什么免费听的电台app 浏览:867
电视安装软件用什么app 浏览:315
黑底白字pdf 浏览:258
pythonantigravity 浏览:345
模糊算法的例题 浏览:948