导航:首页 > 源码编译 > 算法模型线性规划

算法模型线性规划

发布时间:2022-04-18 22:14:31

Ⅰ 求数学模型,各种模型;各种算法

数学建模的十大算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)

2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)

4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)

6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)

7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)

8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)

9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)

10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)

Ⅱ 线性规划的发展

法国数学家J.- B.- J.傅里叶和C.瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。
1939年苏联数学家Л.В.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视。
1947年美国数学家G.B.Dantzing提出求解线性规划的单纯形法,为这门学科奠定了基础。
1947年美国数学家J.von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。
1951年美国经济学家T.C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。
50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B.丹齐克和P.沃尔夫提出分解算法等。
线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究。由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解几千个变量的线性规划问题。
1979年苏联数学家L. G. Khachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法。
1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法。用这种方法求解线性规划问题在变量个数为5000时只要单纯形法所用时间的1/50。现已形成线性规划多项式算法理论。50年代后线性规划的应用范围不断扩大。 建立线性规划模型的方法

Ⅲ 线性规划模型具有哪些特征

线性规划问题的形式特征,三个要素组成:
1、变量或决策变量;
2、目标函数;
3、约束条件。
求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。
为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。
这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。



(3)算法模型线性规划扩展阅读:

线性规划建立的数学模型具有以下特点:
1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。
2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。
3、约束条件也是决策变量的线性函数。
当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。
参考资料来源:搜狗网络-线性规划

Ⅳ 多目标线性规划的常用求解算法有哪些

多目标决策主要有以下几种方法:
(1)化多为少法:将多目标问题化成只有一个或二个目标的问题,然后用简单的决策方法求解,最常用的是线性加权和法。
(2)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。
(3)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。
(4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。
(5)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。
(6)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。
(7)重排序法:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。
(8)多目标群决策和多目标模糊决策等

Ⅳ 解线性规划数学模型有哪些方法

模型建立:
从实际问题中建立数学模型一般有以下三个步骤;
1.根据影响所要达到目的的因素找到决策变量;
2.由决策变量和所在达到目的之间的函数关系确定目标函数;
3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。
线性规划难题解法
所建立的数学模型具有以下特点:
1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。
2、目标函数是决策变量的线性函数,根据具体问题可以是最大化或最小化,二者统称为最优化。
3、约束条件也是决策变量的线性函数。
当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。
例:
生产安排模型:某工厂要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示,表中右边一列是每日设备能力及原材料供应的限量,该工厂生产一单位产品Ⅰ可获利2元,生产一单位产品Ⅱ可获利3元,问应如何安排生产,使其获利最多?
解:
1、确定决策变量:设x1、x2分别为产品Ⅰ、Ⅱ的生产数量;
2、明确目标函数:获利最大,即求2x1+3x2最大值;
3、所满足的约束条件:
设备限制:x1+2x2≤8
原材料A限制:4x1≤16
原材料B限制:4x2≤12
基本要求:x1,x2≥0
用max代替最大值,s.t.(subject to 的简写)代替约束条件,则该模型可记为:
max z=2x1+3x2
s.t. x1+2x2≤8
4x1≤16
4x2≤12
x1,x2≥0
解法
求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。

Ⅵ 算法设计 线性规划 蛮力法 给出详细设计过程

解:#include<iostream>
using namespace std;

//在此现行规划列子:
//第一个约束方程的最大X1 max=4; Y1 max=4;

//第二个约束方程的最大X2 max=6 Y2 max=2;

//取X1,X2 的最小值 X=4+1,包括0

// Y1,Y2的最小值为y=2+1,包括0

//因此时间复杂度为 x*y=8
////////////////////////

int main()
{
int i,j,max=0;
for(i=0;i<=4;i++)
for(j=0;j<=2;j++)
{
if(max < 3*i+5*j)
{
if((i+j <=4) && (i+3*j<=6))
max=3*i+5*j;
}
}
cout<<max<<endl;
return 0;
}

Ⅶ 最优化问题的数学模型是什么什么叫线性规划,什么叫非线性规划

数学模型可以是一个公式,也可以是图表类的东西,也可以是一种算法程序,并没有明确的定义。
当目标函数和约束条件都是决策变量的线性函数时称为线性规划;否则称为非线性规划。

Ⅷ 毕业答辩问题 1,线性规划在物流中有哪些具体应用 2,动态规划的算法模型

1电压不稳2显卡驱动有不兼容性的错误3显示器有问题一般都是显卡驱动问题换一个显卡驱动试试看有时候并不是最新的显卡驱动就是最好的

阅读全文

与算法模型线性规划相关的资料

热点内容
服务器空闲怎么办 浏览:831
数据库使用加密函数 浏览:343
程序员做些什么 浏览:1002
加密未来的趋势 浏览:323
分数等式运算法六年级 浏览:427
单片机怎么设置入口和出口参数 浏览:868
java字符串gbk 浏览:955
编程中的树的遍历分为哪三种类型 浏览:136
核心编程为什么要变量 浏览:704
学动漫编程就业行情好吗 浏览:164
python连接多个类 浏览:596
退app会员费找哪里投诉 浏览:568
射击pdf 浏览:85
python多张图片拼接与层叠 浏览:979
河北廊坊电信dns服务器地址 浏览:851
老股民指标源码 浏览:32
伟福显示未安装编译器什么意思呢 浏览:234
拉伸命令cad 浏览:491
yy安卓怎么抢麦 浏览:933
阿里云共享型服务器价格 浏览:444