‘壹’ 怎样做二面角的平面角
如果要求二面角的平面角那么最常用的方法就是三垂线定理的拐弯做法。就是先从一个点向另一个面做垂线,从垂足引一条垂线到二面角的棱上,二面角的平面角就出现了。
如果计算面积方便,用原来的面积去除投影面积,就是二面角的余弦值那么可以选用面积投影法;通过空间坐标系求两个平面法向量的夹角;分别从两个片面中找到一条直线与二面角的棱垂直(不一定相交)然后二面角的大小就转化为这两条异面直线夹角的问题了。
表示方法
角通常用三个字母表示:两条边上的点的字母写在两旁,顶点上的字母写在中间。概述图中的角用∠AOB表示。但若在不会产生混淆的情形下,也会直接用顶点的字母表示,例如角∠O。在数学式中,一般会用希腊字母(α,β,γ,θ,φ, ...)表示角的大小。为避免混淆,符号π一般不用来表示角度。
用角在圆上所切出的圆弧的长度除以圆的半径,一般记作rad。弧度是国际单位制中规定的角的度量,但却不是中国法定计量单位,角度则是角在中国的法定计量单位。此外,弧度在数学及三角学中有广泛的应用。
以上内容参考:网络-平面角
‘贰’ [紧急求助]什么是二面角的平面角如何求
二面角的通常求法:1、由定义作出二面角的平面角;2、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角;3、利用三垂线定理(逆定理)作出二面角的平面角;4、空间坐标求二面角的大小。
‘叁’ 二面角的平面角及求法!!!!!
方法一:如图所示,建立空间直角坐标系,点B为坐标原点.
依题意得 A(22,0,0),B(0,0,0),C(2,-2,5)A1(22,22,0),B1(0,22,0),C1(2,2,5)
(I)解:易得 AC→=(-2,-2,5),A1B1→=(-22,0,0),
于是 cos〈AC→,A&1B1→>=AC→•A1B1→|AC→|•|A1B1→|=43×22=23,
所以异面直线AC与A1B1所成角的余弦值为 23.
(II)解:易知 AA1→=(0,22,0),A1C1→=(-2,-2,5).
设平面AA1C1的法向量 m→=(x,y,z),
则 {m→•A1C1→=0m→•AA1→=0即 {-2x-2y+5z=022y=0.
不妨令 x=5,可得 m→=(5,0,2),
同样地,设平面A1B1C1的法向量 n→=(x,y,z),
则 {n→•A1C1→=0n→•A1B1→=0即 {-2x-2y+5z=0-22x=0.不妨令 y=5,
可得 n=(0,5,2).
于是 cos<m→,n→>=m→•n→|m→||n→|=27•7=27,
从而 sin<m→,n→>=357.
所以二面角A-A1C1-B的正弦值为 357.
(III)解:由N为棱B1C1的中点,
得 N(22,322,52).设M(a,b,0),
则 MN→=(22-a,322-b,52)
由MN⊥平面A1B1C1,得 {MN→•A1B1→=0MN→•A1B1→=0
即 {(22-a)•(-22)=0(22-a)•(-2)+(322-b)•(-2)+52•5=0.
解得 {a=22b=24.故 M(22,24,0).
因此 BM→=(22,24,0),所以线段BM的长为 |BM→|=104.
方法二:
(I)解:由于AC∥A1C1,故∠C1A1B1是异面直线AC与A1B1所成的角.
因为C1H⊥平面AA1B1B,又H为正方形AA1B1B的中心, AA1=22,C1H=5,
可得A1C1=B1C1=3.
因此 cos∠C1A1B1=A1C12+A1B12-B1C122A1C1•A1B1=23.
所以异面直线AC与A1B1所成角的余弦值为 23.
(II)解:连接AC1,易知AC1=B1C1,
又由于AA1=B1A1,A1C1=A1=C1,
所以△AC1A1≌△B1C1A,过点A作AR⊥A1C1于点R,
连接B1R,于是B1R⊥A1C1,故∠ARB1为二面角A-A1C1-B1的平面角.
在Rt△A1RB1中, B1R=A1B1•sin∠RA1B1=22•1-(23)2=2143.
连接AB1,在△ARB1中, AB1=4,AR=B1R,cos∠ARB1=AR2+B1R2-AB122AR•B1R= -27,
从而 sin∠ARB1=357.
所以二面角A-A1C1-B1的正弦值为 357.
(III)解:因为MN⊥平面A1B1C1,所以MN⊥A1B1.
取HB1中点D,连接ND,由于N是棱B1C1中点,
所以ND∥C1H且 ND=12C1H=52.
又C1H⊥平面AA1B1B,
所以ND⊥平面AA1B1B,故ND⊥A1B1.
又MN∩ND=N,
所以A1B1⊥平面MND,连接MD并延长交A1B1于点E,
则ME⊥A1B1,故ME∥AA1.
由 DEAA1=B1EB1A1=B1DB1A=14,
得 DE=B1E=22,延长EM交AB于点F,
可得 BF=B1E=22.连接NE.
在Rt△ENM中,ND⊥ME,故ND2=DE•DM.
所以 DM=ND2DE=524.
可得 FM=24.
连接BM,在Rt△BFM中, BM=FM2+BF2=104.
‘肆’ 怎样求二面角的平面角
我们求二面角的平面角的常用方法有3类:
一、直接法:其中包括定义法、垂线法、垂面法
定义法:步骤:
1、在二平面的棱上取恰当的点(经常是端点和中点、如利用等腰(含等边)三角形底边的中点)
2、过这个点分别在两半平面内做相棱的垂线,然后把两条垂线放到一个三角形中考虑。(有时也经常做两条垂线的平行线,使它们在一个更理想的三角形中)。
说明:因为题目中所给的点或你能找到的特殊点分别向交线作垂线多半不交于一点,所以这种情况很少,因此有必要引导学生探究其他方法。
垂线法:利用作(或找)面的垂线(线面垂直的判定和性质)作平面角。
例1锐二面角a-L-β,如图(1)所示,过a面的一点P,向β面作垂线,垂足为B,再过B向这二面角的棱L作垂线,垂足C,连接PC。可用三垂线定理证明PCB就是这两个面的二面角
例2钝二面角a-L-β,如图(2)所示,过a面的一点P,向β面作垂线,垂足为B,过B向这二面角的棱l作垂线,垂足C,连接PC。
则角PCB为二面角a-L-β的平面角的补角。
说明:引导学生在具体题目中注意判断二面角是钝二面角还是锐二面角是解决问题的前提。
垂面法:(教材复习参考题二A组第10题提示)作二面角棱的垂面,则垂面与二面角形成的两交线所成的角就是二面角的平面角。
说明:棱的垂面经常不会直接给出,而是以点到面的距离的条件呈现的。这样过此点所作的面的垂线是否落在半平面内,直接影响到所得到的两射线所成的角是二面角的平面角还是其补角。
例3二面角内一点到两个面的距离分别为、4,到棱的距离为,则二面角的度数为(75°或165°)
解析:分两种情况:锐二面角和钝二面角
1.当二面角为锐二面角时,过点P向a、β半平面引垂线,垂足落在半平面内,此时P点的棱的垂面与两半平面的交线所成的角为二面角的平面角。
2.当二面角为钝二面角时,作平面平面,作平面平面,当P点在二面角内时,过点P向a、两半平面作垂线,垂足均落在半平面内,此时过P点且与棱垂直的平面与两半平面形成的两射线所成的角为二面角的平面角。
当P点在二面角内时,过点P向a、两半平面作垂线,垂足不能同时落在两个半平面内,此时过P点且与棱垂直的平面与两半平面形成的两射线所成的角为二面角的平面角的补角。
二、间接法:
面积射影定理:“平面图形射影面积等于被射影图形的面积S乘以该图形所在平面与射影面所夹角的余弦。”
S射影面积=S原图形面积*cos(两个平面所成的二面角)
即cosθ=S射影图/S原图
(平面多边形及其射影的面积分别是S原,S射影,它们所在平面所成锐二面角的为θ)
证明思路:因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的平方比。所以就是图形的长度(三角形中称高)的比。那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线),那么三角形的斜边和另一直角边就是其多边形的长度比,即为平面多边形的面积比,而将这个比值放到该平面三角形中去运算,即可。
说明:运用这一方法可以解决求无棱二面角的大小问题,关键是从图中找出斜面多边形和它在有关平面上的射影(即找到从一个面内一点向另一面的垂线)通常求两个面内的三角形的面积比较容易。
三、向量法:利用两个平面的法向量M,N的夹角来求,这是高考中最有效的办法不管有多难都可求出二面角的大小,也是最好的办法。不过求出后要根据二面角的实际大小来判断算出的结果与实际情况下的角是否相同利用空间向量求二面角的平面角步骤(设二面角平面角为θ)
1)建立空间直角坐标系;
2)设平面的法向量为N(X1,Y1,Z1),平面法向量为M(X2,Y2,Z2);
3)在内找两条线L1,L2,让N×L1=0,N×L2=0求出N的坐标,M也是如此求出;
4)然后利用cosθ=N?M/|N|×|M|即可求出θ的值
说明:锐二面角时,法向量的夹角即该二面角的平面角钝二面角时,法向量的夹角的补角为二面角的平面角
小结:
①方法一是基础,是基本概念的运用;方法二、三是射影、向量与二面角定义的综合,是拓展。只有理解掌握了第一类方法才能理解第二、三类方法。
②文科学生只需掌握第一类即可,对于理科学生掌握了上述三类方法,则有利于解决比较复杂的二面角问题。用代数的方法解决立体几何问题是立体几何的发展趋势,儿向量是用代数的方法解决立体几何问题的主要工具,故,学会用向量法解决立体几何问题是学好立体几何的基础。
‘伍’ 请问求两个平面的二面角有几种方法
如果已经求得各点坐标,或者说我们说的,能够建系,
就用“法向量法”,所谓法向量,是指垂直于一个平面的直线,
根据向量可在平面内任意平移,我们可以知道,一个平面的法向量有无数多条。
以上是理论知识简介,因不知道你懂不,所以只得在此阐述下,
不然可能会对下面的问题的理解不透产生障碍。
具体做法:
1.
设分别设出两个平面的法向量,n1=(x1,
y1,
z1);
n2=(x2,
y2,
z2)
2.
求出平面内线段所在直线的向量式(每个平面求出两个向量)
3.
利用法向量垂直平面,即垂直平面内所有直线,建立方程组(3元一次方程组,仅两个方程)
(1)建立的条件是,两个相互垂直的向量,乘积为0
(2)由于法向量有3个未知数,我们通常只用建立两个方程组成的方程组。这样可以得到关于这三个未知数的代数关系。而不是像初中的解三元一次方程组,可以解出一组唯一解。换句话说,由于各未知数间是满足一定的代数关系,那么立体几何中,依此法得出的应该是无数对解。不过,实际解题中,都是通过赋值法(见下详述)来得到唯一的一组解,即一个确定的法向量。
(3)赋值:即是赋予法向量的三个未知数中的某一个一个确实的代数值,比如0?1?等常实数,从而根据垂直向量数量积为0建立的方程中,得到的未知数之间的关系,就可以求出其他的两个未知数的具体的值。那么,这样得到的一个法向量,就是垂直于平面的一条法向量(仅是一条哈,因为平面法向量有无数条的)
ps:两条法向量的求法,都一致。
4.
我们根据异面直线所成的角的求法(平移其中一条或者两条到同一平面中,必须放到平面中来求的,对吧!!!),可以知道,两个平面的任意法向量所成的角,都相等。
而两个半平面所成的二面角,与他们的法向量所成的角的平面角“互补”(千万注意此点,因为异面直线所在的角,一定是锐角或者直角,不可能是钝角;但是二面角,是可以为锐二面角或直二面角,也可以为钝二面角的)。
依据上面的理论依据,由向量的乘法,则可求出cos
的绝对值(请最好加绝对值符号,异面直线所成的角,不能为钝角,因此余弦值不能为负,但向量方向不同,则可能求出的余弦值为负)。
5.
判断范围,注意取值。
上面,求cos
的值时,请提前判断题目让所求两个半平面所成的角(1)是锐角或直角?即我们所说的锐二面角还是直二面角。(2)是钝二面角吗?
因为,根据向量的方向性,可以知道,如果向量所取的方向不同,cos
的绝对值不变,但可能得到两个互为相反数的值,所以在利用法向量法求两个二面角的平面角时,先判断二面角的取值范围。锐二面或直,显然,直接取cos
=a(0≤a<1)的值,进行反余(arccosa)表示即可;
如果图上明显为钝二面角,则所求二面角的平面角应该表示为:∏-arccosa.(a为法向量所成角的余弦值,取绝对值)
我尽可能说地详细清楚,包括细节,请细体味!
hope
study
well
and
make
progress
everyday!
有不明白的地方请追求问题即可!