导航:首页 > 源码编译 > 分子动力学算法

分子动力学算法

发布时间:2022-04-19 16:56:53

① 分子动力学模拟计算自由能都有哪些方法

这些方法MD和MC都适用,一般都是读取轨迹文件然后进行计算。
Widom Insertion是计算化学势比较经典的方法,Frenkel的书上有伪代码。

② 分子动力学,半经验方法,完全重头算及密度泛函这四种方法的主要研究体系及性质的

分子动力学主要是研究生物大分子的。半经验也是研究大体系的,另外两种是研究小分子的。

③ 分子动力学应变速率怎么计算的

分子动力学可以用于NPT,NVE,NVT等系综的计算,是一种基于牛顿力学确定论的热力学计算方法,可以广泛应用于物理,化学,生物,材料,医学等各个领域.
目前由于计算机性能的限制,其可计算的尺寸还很小,一般计算的粒子数会不会超过5位数,计算的尺寸一般只有几十纳米甚至更小

④ 怎么学分子动力学模拟与计算

入门阶段,首先你要知道你想做什么,最好是找个看起来不太难的文章照着把里面的模拟自己重复一遍。因为全原子模拟大都是用一些软件来进行的,因此你首先需要的是学会一些软件的使用,常用的生物分子模拟软件包括:Gromacs、Amber 和 NAMD 等等,材料有关的模拟还有 Lammps 等软件。学这些东西的时候首先主要是要知道模拟的基本流程以及实现的方法,包括怎样搭建模拟的体系、各种文件格式的转换、系综与盒子的选择、水及离子、能量极小化等等,等到模拟的轨迹出来怎样对数据进行处理,等到之后还可以学习软件里面的一些插件,例如一些加速采样的方法等等。

自己学一种语言的话,在初期,做 MD 比较重要的是脚本语言,包括 Shell 脚本或者其它你自己喜欢的脚本。因为最终你还是不太可能完全在自己的电脑上跑程序的,所以要有一个你自己用得比较熟的、能对大规模的数据进行处理的语言,我觉得 Python 是很适合的,而且里面的 Prody,Matplotlib 等等各种包都非常好用。

入门之后,如果希望自己通过一些量子化学的计算结果去调整和修改现有的力场,那么需要能看懂其他人的代码,这种时候很可能会需要能读懂 Fortran 的代码。如果自己喜欢做一些简化模型自己弄着玩,用 Python 之类的写起来是简单,但是效率太低,还是需要会一点点 C 或者 C++,当然语言只是一方面,更重要的是自己要结合实际的体系做一些最简单的优化。

相比起书籍来,还可以关注一些做模拟的学术们聚集的论坛和社区,例如:小木虫、分子模拟论坛、ResearchGate 等等。

参考书的话,其实有很多,不过还是要看你自己需要哪方面的内容:
分子模拟方面的经典书籍:Understanding molecular simulation: From algorithms to applications 和 Molecular Modelling - Principles and Applications ,两本书的侧重点有些不同。

中文书籍:《分子模拟的理论与实践》《计算化学——从理论化学到分子模拟》中的部分章节;

偏统计和计算物理方面:Statistical Mechanics: Algorithms and Computations。

⑤ 计算化学的分子动力学

分子动力学使用牛顿运动定律研究系统的含时特性,包括振动或布朗运动。大部分情况经常加入一些经典力学的描述。分子动力学与密度泛函理论的结合称作Car-Parrinello方法。
半经验方法
电子结构
半经验方法省略或近似处理了Hartree-Fock计算中的一些项(例如双电子积分)。为了修正这些近似方法带来的误差,半经验方法计算使用了一系列由实验结果拟合的参数。有时,这些参数是根据第一原理计算结果进行拟合的。
经验方法是对半经验方法的进一步近似。经验方法并没有包括哈密顿量的双电子部分。经典方法包括埃里克·休克尔提出的应用于π电子体系的Huckel方法和Roald·霍夫曼提出的扩展Huckel方法。
半经验计算比第一原理计算快很多。但是如果计算的分子与参数化该方法时使用的分子结构不相近时,半经验方法可能给出完全错误的结果。
半经验方法在有机化学领域应用最为广泛,因为有机分子的大小适中并主要由少数几种原子构成。
与经验方法类似,半经验方法也可分为两大类:
限于π电子体系的半经验方法
限于价电子体系的半经验方法
分子力学方法
很多情况下,对大分子体系的处理可以完全避免使用量子化学计算。分子力学模拟使用经典力学模型(例如谐振子)描述化合物的能量。分子力学模型的所有常数均通过实验数据或第一原理计算结果得到。参数和方程的优化结果称为分子力场。
进行参数化的化合物库对分子力学方法的计算成功与否至关重要。针对某类分子优化的力场只有在应用于同类分子时才可保证得到可信的结果。

⑥ 分子动力学方法适用于处理什么问题 其处理问题的基本过程是什么

分子动力学可以用于NPT,NVE,NVT等系综的计算,是一种基于牛顿力学确定论的热力学计算方法,可以广泛应用于物理,化学,生物,材料,医学等各个领域。
目前由于计算机性能的限制,其可计算的尺寸还很小,一般计算的粒子数会不会超过5位数,计算的尺寸一般只有几十纳米甚至更小
基本过程:
确定起始构型
进行分子动力学模拟的第一步是确定起始构型, 一个能量较低的起始构型是进行分子模拟的基础 ,一般分子的起始构型主要来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成的,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。

进入平衡相
由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

进入生产相
进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个粒子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点(理论上,如果模拟时间无限)。计算分析所用样本正是从这个过程中抽取的。

计算结果用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。

⑦ 分子动力学 qm/mm 什么关系

在分子尺度(粗略100个原子)和微观尺度(粗略1万个原子)之间,存在有一个gap。分子尺度下,基于量子力(QM)学密度泛函理论的第一性原理计算可以描述小颗粒的电子结构特性。在微观尺度下,基于经典力学的分子动力学模拟(MM) 可以描述物质的热力学特性。然而,在两者之间,昂贵的第一原理计算无法计算如此大的体系,而基于经典的分子动力学无法计算物质的电子结构等量子力学特性。由此,产生了QM/MM的计算方法。其核心思想是分层计算,重要的位置用较贵的QM算法,周围的位置用MM算法

⑧ 分子动力学的基本步骤

用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。作用势与动力学计算
作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动 和 分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是相对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大的困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍然非常广泛。 以下是做模拟的一般性步骤,具体的步骤和过程依赖于确定的系统或者是软件,但这不影响我们把它当成一个入门指南:
1)首先我们需要对我们所要模拟的系统做一个简单的评估, 三个问题是我们必须要明确的:
做什么(what to do)为什么做(why to do)怎么做(how to do)
2)选择合适的模拟工具,大前提是它能够实现你所感兴趣的目标,这需要你非常谨慎的查阅文献,看看别人用这个工具都做了些什么,有没有和你相关的,千万不要做到一半才发现原来这个工具根本就不能实现你所感兴趣的idea,切记!
考虑1:软件的选择,这通常和软件主流使用的力场有关,而软件本身就具体一定的偏向性,比如说,做蛋白体系,Gromacs,Amber,Namd均可;做DNA, RNA体系,首选肯定是Amber;做界面体系,Dl_POLY比较强大,另外做材料体系,Lammps会是一个不错的选择
考虑2:力场的选择。力场是来描述体系中最小单元间的相互作用的,是用量化等方法计算拟合后生成的经验式,有人会嫌它粗糙,但是它确确实实给我们模拟大系统提供了可能,只能说关注的切入点不同罢了。常见的有三类力场:全原子力场,联合力场,粗粒化力场;当然还有所谓第一代,第二代,第三代力场的说法,这里就不一一列举了。
再次提醒注意:必须选择适合于我们所关注体系和我们所感兴趣的性质及现象的力场。
3)通过实验数据或者是某些工具得到体系内的每一个分子的初始结构坐标文件,之后,我们需要按我们的想法把这些分子按照一定的规则或是随机的排列在一起,从而得到整个系统的初始结构,这也是我们模拟的输入文件。
4)结构输入文件得到了,我们还需要力场参数输入文件,也就是针对我们系统的力场文件,这通常由所选用的力场决定,比如键参数和非键参数等势能函数的输入参数。
5)体系的大小通常由你所选用的box大小决定,我们必须对可行性与合理性做出评估,从而确定体系的大小,这依赖于具体的体系,这里不细说了。6)由于初始构象可能会存在两个原子挨的太近的情况(称之为bad contact),所以需要在正式模拟开始的第一步进行体系能量最小化,比较常用的能量最小化有两种,最速下降法和共轭梯度法,最速下降法是快速移除体系内应力的好方法,但是接近能量极小点时收敛比较慢,而共轭梯度法在能量极小点附近收敛相对效率高一些,所有我们一般做能量最小化都是在最速下降法优化完之后再用共轭梯度法优化,这样做能有效的保证后续模拟的进行。
7)以平衡态模拟为例,你需要设置适当的模拟参数,并且保证这些参数设置和力场的产生相一致,举个简单的例子,gromos力场是用的范德华势双截断来定范德华参数的,若你也用gromos力场的话也应该用双截断来处理范德华相互作用。常见的模拟思路是,先在NVT下约束住你的溶质(剂)做限制性模拟,这是一个升温的过程,当温度达到你的设定后, 接着做NPT模拟,此过程将调整体系的压强进而使体系密度收敛。
经过一段时间的平衡模拟,在确定系统弛豫已经完全消除之后,就可以开始取数据了。如何判断体系达到平衡,这个问题是比较技术性的问题,简单的讲可以通过以下几种方式,一,看能量(势能,动能和总能)是否收敛;二,看系统的压强,密度等等是否收敛;三看系统的RMSD是否达到你能接受的范围,等等。
8)运行足够长时间的模拟以确定我们所感兴趣的现象或是性质能够被观测到,并且务必确保此现象出现的可重复性。
9)数据拿到手后,很容易通过一些可视化软件得到轨迹动画,但这并不能拿来发文章。真正的工作才刚刚开始——分析数据,你所感兴趣的现象或性质只是表面,隐含在它们之中的机理才是文章中的主题。

⑨ 为什么分子动力学要计算一个个的分子的运动

为什么分子动力学要计算一个个的分子的运动
分子动力学使用牛顿运动定律研究系统的含时特性,包括振动或布朗运动。大部分情况经常加入一些经典力学的描述。分子动力学与密度泛函理论的结合称作Car-Parrinello方法。
半经验方法
电子结构
半经验方法省略或近似处理了Hartree-Fock计算中的一些项(例如双电子积分)。为了修正这些近似方法带来的误差,半经验方法计算使用了一系列由实验结果拟合的参数。有时,这些参数是根据第一原理计算结果进行拟合的。
经验方法是对半经验方法的进一步近似。经验方法并没有包括哈密顿量的双电子部分。经典方法包括埃里克·休克尔提出的应用于π电子体系的Huckel方法和Roald·霍夫曼提出的扩展Huckel方法。
半经验计算比第一原理计算快很多。但是如果计算的分子与参数化该方法时使用的分子结构不相近时,半经验方法可能给出完全错误的结果。

阅读全文

与分子动力学算法相关的资料

热点内容
什么购物app是正品 浏览:476
安卓系统断网怎么回事 浏览:456
黑马程序员第9章 浏览:703
汽车编程所用的函数 浏览:447
云管理服务器如何注册 浏览:208
linux下重启网卡 浏览:118
乐橙怎么加密 浏览:262
幸识是个什么样的app 浏览:54
程序员直男认口红 浏览:37
雕刻机的编程点怎么算 浏览:643
ftp服务器的http地址 浏览:940
单位吨标煤最简单算法 浏览:423
企业微信中设置服务器是什么 浏览:385
闪电侠解压视频 浏览:293
rgb灯条51单片机 浏览:768
问道4月5日为什么服务器超时 浏览:991
服务器的url地址是什么 浏览:973
上台唱歌前如何缓解压力 浏览:169
有什么约饭app 浏览:648
于小冬速写pdf 浏览:156